NGSS
Hawaii

This alignment guide shows how KnowAtom’s integrated model of science curriculum is designed for the Hawaii Science Standards(Next Generation Science Standards).

Phenomena Based Lessons Aligned to NGSS

  • All Grades
  • K
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Science Lesson State Standards State ID Grades Performance Expectation
Earth and Moon Patterns HI NGSS 1-ESS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use observations of the sun, moon, and stars to describe patterns that can be predicted.

Sun Position and Shadow Patterns HI NGSS 1-ESS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use observations of the sun, moon, and stars to describe patterns that can be predicted.

Seasonal Temperatures and Water Cycles HI NGSS 1-ESS1-2 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Make observations at different times of year to relate the amount of daylight to the time of year.

Seasonal Patterns HI NGSS 1-ESS1-2 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Make observations at different times of year to relate the amount of daylight to the time of year.

Engineering Litter Collectors HI NGSS 1-LS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Insect Anatomy - Structure and Function HI NGSS 1-LS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Plant Structures HI NGSS 1-LS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Ant Behavior and Food HI NGSS 1-LS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Bird Beak Structure and Function HI NGSS 1-LS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Living and Nonliving Things HI NGSS 1-LS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Engineering Dams HI NGSS 1-LS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Parent and Offspring Behaviors HI NGSS 1-LS1-2 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.

Plant Structures HI NGSS 1-LS3-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.

Living and Nonliving Things HI NGSS 1-LS3-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.

Parent and Offspring Behaviors HI NGSS 1-LS3-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents. *Students focus on animals in this unit.

Making Sounds and Instruments HI NGSS 1-PS4-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.

Light HI NGSS 1-PS4-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Make observations to construct an evidence-based account that objects in darkness can be seen only when illuminated.

Sounds and Senses HI NGSS 1-PS4-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.
Engineering Communication Devices HI NGSS 1-PS4-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.
Materials and Light HI NGSS 1-PS4-3 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Plan and conduct investigations to determine the effect of placing objects made with different materials in the path of a beam of light.

Earth Events HI NGSS 2-ESS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Use information from several sources to provide evidence that Earth events can occur quickly or slowly.

Controlling Erosion HI NGSS 2-ESS2-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.

Mapping Land and Water HI NGSS 2-ESS2-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a model to represent the shapes and kinds of land and bodies of water in an area.

Water Flow HI NGSS 2-ESS2-3 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.

How Plants Grow HI NGSS 2-LS2-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Plan and conduct an investigation to determine if plants need sunlight and water to grow.

Flowers HI NGSS 2-LS2-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

Butterfly Life Cycle HI NGSS 2-LS2-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

Butterfly Structure and Function HI NGSS 2-LS2-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

Engineering Hand Pollinators HI NGSS 2-LS2-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

Habitats HI NGSS 2-LS4-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Make observations of plants and animals to compare the diversity of life in different habitats.

Predator-Prey Relationships HI NGSS 2-LS4-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Make observations of plants and animals to compare the diversity of life in different habitats.

Property of Materials HI NGSS 2-PS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.

Matter and Properties HI NGSS 2-PS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.

Engineering Owl Shelters HI NGSS 2-PS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. 

Floating and Sinking HI NGSS 2-PS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Engineering Boats HI NGSS 2-PS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Property of Materials HI NGSS 2-PS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Engineering Owl Shelters HI NGSS 2-PS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Action-Reaction Forces HI NGSS 2-PS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Friction HI NGSS 2-PS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Engineering Owl Shelters HI NGSS 2-PS1-3 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object.

Matter and Properties HI NGSS 2-PS1-4 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.

Water Flow HI NGSS 2-PS1-4 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Obtain information to identify where water is found on Earth and that it can be solid or liquid.

Engineering Library Scopes HI NGSS 3-5-ETS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Flood Control Engineering HI NGSS 3-5-ETS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Define a simple design problem reflecting a need or want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Launchers HI NGSS 3-5-ETS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Hearing Toys HI NGSS 3-5-ETS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Pick-and-Place Devices HI NGSS 3-5-ETS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Water Prisms HI NGSS 3-5-ETS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Filtration Devices HI NGSS 3-5-ETS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Permeable Concrete HI NGSS 3-5-ETS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Roller Coasters HI NGSS 3-5-ETS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Sound Barriers HI NGSS 3-5-ETS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Skyscrapers HI NGSS 3-5-ETS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Electric Cars HI NGSS 3-5-ETS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Information Transfer HI NGSS 3-5-ETS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Flood Control Engineering HI NGSS 3-5-ETS1-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Generate and compare multiple possible solutions to a problem, based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Launchers HI NGSS 3-5-ETS1-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Skyscrapers HI NGSS 3-5-ETS1-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Hearing Toys HI NGSS 3-5-ETS1-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Water Prisms HI NGSS 3-5-ETS1-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Pick-and-Place Devices HI NGSS 3-5-ETS1-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Filtration Devices HI NGSS 3-5-ETS1-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Permeable Concrete HI NGSS 3-5-ETS1-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Roller Coasters HI NGSS 3-5-ETS1-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Sound Barriers HI NGSS 3-5-ETS1-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Library Scopes HI NGSS 3-5-ETS1-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Electric Cars HI NGSS 3-5-ETS1-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Information Transfer HI NGSS 3-5-ETS1-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Water Prisms HI NGSS 3-5-ETS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Permeable Concrete HI NGSS 3-5-ETS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Library Scopes HI NGSS 3-5-ETS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Flood Control Engineering HI NGSS 3-5-ETS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Launchers HI NGSS 3-5-ETS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Skyscrapers HI NGSS 3-5-ETS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. 

Engineering Pick-and-Place Devices HI NGSS 3-5-ETS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Hearing Toys HI NGSS 3-5-ETS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Filtration Devices HI NGSS 3-5-ETS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Roller Coasters HI NGSS 3-5-ETS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Sound Barriers HI NGSS 3-5-ETS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Electric Cars HI NGSS 3-5-ETS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Information Transfer HI NGSS 3-5-ETS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Earth Materials and Water Flow HI NGSS 3-ESS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

Weather and Climate HI NGSS 3-ESS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

Earth's Interacting Systems HI NGSS 3-ESS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

Weather and Climate HI NGSS 3-ESS2-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Obtain and combine information to describe climates in different regions of the world.

Energy from the Sun HI NGSS 3-ESS2-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Obtain and combine information to describe climates in different regions of the world. 

Heat and Evaporation HI NGSS 3-ESS2-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Obtain and combine information to describe climates in different regions of the world.

Earth's Interacting Systems HI NGSS 3-ESS2-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Obtain and combine information to describe climates in different regions of the world.

Flood Control Engineering HI NGSS 3-ESS3-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.

Engineering Permeable Concrete HI NGSS 3-ESS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.

Earth Materials and Water Flow HI NGSS 3-ESS3-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Obtain and combine information to describe climates in different regions of the world.

Life Cycles HI NGSS 3-LS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

Plant Growth and Acid Rain HI NGSS 3-LS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

Frog Life Cycle HI NGSS 3-LS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

Environmental Change HI NGSS 3-LS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Construct an argument that some animals form groups that help members survive.

Life Cycles HI NGSS 3-LS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Construct an argument that some animals form groups that help members survive.

Selecting Traits HI NGSS 3-LS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.

Heredity and Traits HI NGSS 3-LS3-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.

Ecosystem Dynamics HI NGSS 3-LS3-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.

Selecting Traits HI NGSS 3-LS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Use evidence to support the explanation that traits can be influenced by the environment.

Ecosystem Dynamics HI NGSS 3-LS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Use evidence to support the explanation that traits can be influenced by the environment.

Heredity and Traits HI NGSS 3-LS3-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Use evidence to support the explanation that traits can be influenced by the environment.

Changing Earth's Surface HI NGSS 3-LS4-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.

Fossil Organisms and their Environment HI NGSS 3-LS4-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.

Selecting Traits HI NGSS 3-LS4-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

Ecosystem Dynamics HI NGSS 3-LS4-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

Heredity and Traits HI NGSS 3-LS4-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

Fossil Organisms and their Environment HI NGSS 3-LS4-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Ecosystem Dynamics HI NGSS 3-LS4-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Selecting Traits HI NGSS 3-LS4-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Energy from the Sun HI NGSS 3-LS4-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Environmental Change HI NGSS 3-LS4-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Selecting Traits HI NGSS 3-LS4-4 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

 Make a claim about the merit of a solution to a problem caused when the environment changes and the type of plants and animals that live there may change.

Environmental Change HI NGSS 3-LS4-4 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make a claim about the merit of a solution to a problem caused when the environment changes and the type of plants and animals that live there may change.

Energy Transfer and Levers HI NGSS 3-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Forces and Levers HI NGSS 3-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
Comparing Forces HI NGSS 3-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Engineering Launchers HI NGSS 3-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Balanced vs. Unbalanced Forces HI NGSS 3-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Energy and Collisions HI NGSS 3-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Windmill Forces HI NGSS 3-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Patterns in Motion HI NGSS 3-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion.

Forces and Materials HI NGSS 3-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Engineering Skyscrapers HI NGSS 3-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Motion in the Solar System HI NGSS 3-PS2-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion.

Static Charge HI NGSS 3-PS2-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Magnets and Magnetic Fields HI NGSS 3-PS2-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Engineering Pick-and-Place Devices HI NGSS 3-PS2-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Magnets and Motors HI NGSS 3-PS2-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Current Electricity HI NGSS 3-PS2-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Engineering Pick-and-Place Devices HI NGSS 3-PS2-4 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Define a simple design problem that can be solved by applying scientific ideas about magnets.

Plate Tectonics and Landform Patterns HI NGSS 4-ESS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.

Water Erosion HI NGSS 4-ESS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.

Changing Earth's Surface HI NGSS 4-ESS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.

Weathering Rocks HI NGSS 4-ESS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. *In this unit, students focus on the role of weathering in erosion, deposition, and Earth’s changing landscape.

Flood Control Engineering HI NGSS 4-ESS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

Water Erosion HI NGSS 4-ESS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

Weathering Rocks HI NGSS 4-ESS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

Plate Tectonics and Landform Patterns HI NGSS 4-ESS2-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Analyze and interpret data from maps to describe patterns of Earth’s features.

Earth's Surface Features HI NGSS 4-ESS2-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Analyze and interpret data from maps to describe patterns of Earth’s features.  how different kinds of rock are mechanically weathered, analyzing how the sediment caused by the weathering can then be eroded. *In this unit, students focus on patterns in the locations of volcanoes and earthquakes.

Hydroelectric Dams and the Environment HI NGSS 4-ESS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

Water Erosion HI NGSS 4-ESS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

Changing Earth's Surface HI NGSS 4-ESS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

Flood Control Engineering HI NGSS 4-ESS3-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.

Engineering Permeable Concrete HI NGSS 4-ESS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.

Heredity and Traits HI NGSS 4-LS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Plant Growth and Acid Rain HI NGSS 4-LS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Plant and Animal Cells HI NGSS 4-LS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Plant Growth HI NGSS 4-LS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Plant Structures HI NGSS 4-LS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Frog Life Cycle HI NGSS 4-LS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Mealworm Senses HI NGSS 4-LS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Selecting Traits HI NGSS 4-LS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Energy from the Sun HI NGSS 4-LS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Mealworm Senses HI NGSS 4-LS1-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.

Patterns in Motion HI NGSS 4-PS3-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Use evidence to construct an explanation relating the speed of an object to the energy of that object. *Students are introduced to the relationship between energy and speed in this unit.

Energy and Collisions HI NGSS 4-PS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. *In this unit, students are introduced to the concept of patterns caused by the relative motions of the sun, moon, and Earth.

Energy Transfer and Levers HI NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Launchers HI NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Current Electricity HI NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Electric Cars HI NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Water Prisms HI NGSS 4-PS3-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Sound Energy and Mediums HI NGSS 4-PS3-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Hearing Toys HI NGSS 4-PS3-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Friction and Motion HI NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Roller Coasters HI NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Electrical Currents and Circuits HI NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Magnets and Motors HI NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Sound Energy HI NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Sound Energy and Materials HI NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Sound Barriers HI NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Library Scopes HI NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Windmill Forces HI NGSS 4-PS3-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.*Students are introduced to energy transfer in this unit by focusing on moving substances. They will explore other forms of energy transfer in later units. 

Waves and Energy HI NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Pitch and Volume HI NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Information Transfer HI NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Forces and Levers HI NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Energy and Collisions HI NGSS 4-PS3-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Ask questions and predict outcomes about the changes in energy that occur when objects collide.

Engineering Launchers HI NGSS 4-PS3-4 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Engineering Roller Coasters HI NGSS 4-PS3-4 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. 

Electrical Currents and Circuits HI NGSS 4-PS3-4 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Magnets and Motors HI NGSS 4-PS3-4 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Engineering Electric Cars HI NGSS 4-PS3-4 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Engineering Information Transfer HI NGSS 4-PS3-4 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Sound Energy HI NGSS 4-PS4-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.

Waves and Energy HI NGSS 4-PS4-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.

Engineering Water Prisms HI NGSS 4-PS4-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.

Engineering Library Scopes HI NGSS 4-PS4-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.

Engineering Information Transfer HI NGSS 4-PS4-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.

Engineering Information Transfer HI NGSS 4-PS4-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Generate and compare multiple solutions that use patterns to transfer information.

Motion in the Solar System HI NGSS 5-ESS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth. 

Scaling the Sun Earth Moon System HI NGSS 5-ESS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth.

Balanced vs. Unbalanced Forces HI NGSS 5-ESS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth.

Patterns HI NGSS 5-ESS1-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.

Balanced vs. Unbalanced Forces HI NGSS 5-ESS1-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. *In this unit, students are introduced to the concept of patterns caused by the relative motions of the sun, moon, and Earth.

Fossil Organisms and their Environment HI NGSS 5-ESS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Heat and Evaporation HI NGSS 5-ESS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Weathering Rocks HI NGSS 5-ESS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Earth's Water HI NGSS 5-ESS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Earth's Interacting Systems HI NGSS 5-ESS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Earth Materials and Water Flow HI NGSS 5-ESS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Energy from the Sun HI NGSS 5-ESS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Environmental Change HI NGSS 5-ESS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Heat and Evaporation HI NGSS 5-ESS2-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

Earth's Water HI NGSS 5-ESS2-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

Earth Materials and Water Flow HI NGSS 5-ESS2-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

Engineering Library Scopes HI NGSS 5-ESS3-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

Engineering Filtration Devices HI NGSS 5-ESS3-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

Hydroelectric Dams and the Environment HI NGSS 5-ESS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

Plant Growth and Acid Rain HI NGSS 5-LS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Support an argument that plants get the materials they need for growth chiefly from air and water.

Plant Growth HI NGSS 5-LS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Support an argument that plants get the materials they need for growth chiefly from air and water.

Food Webs HI NGSS 5-LS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Support an argument that plants get the materials they need for growth chiefly from air and water.

Plant Structures HI NGSS 5-LS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Support an argument that plants get the materials they need for growth chiefly from air and water.

Energy from the Sun HI NGSS 5-LS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Support an argument that plants get the materials they need for growth chiefly from air and water.

Decomposition HI NGSS 5-LS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Energy and Matter in Food Webs HI NGSS 5-LS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Ecosystem Dynamics HI NGSS 5-LS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Energy from the Sun HI NGSS 5-LS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Fossil Organisms and their Environment HI NGSS 5-LS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Heat and Matter HI NGSS 5-PS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model to describe that matter is made of particles too small to be seen.

Sound Energy and Materials HI NGSS 5-PS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe that matter is made of particles too small to be seen.

Engineering Sound Barriers HI NGSS 5-PS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

 Develop a model to describe that matter is made of particles too small to be seen.

Static Charge HI NGSS 5-PS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model to describe that matter is made of particles too small to be seen.

Sound Energy and Mediums HI NGSS 5-PS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model to describe that matter is made of particles too small to be seen. 

Conservation of Matter HI NGSS 5-PS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe that matter is made of particles too small to be seen.

Structure of Matter HI NGSS 5-PS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model to describe that matter is made of particles too small to be seen.

Properties of Matter HI NGSS 5-PS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop a model to describe that matter is made of particles too small to be seen.

Electrical Currents and Circuits HI NGSS 5-PS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe that matter is made of particles too small to be seen.

Sound Energy HI NGSS 5-PS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe that matter is made of particles too small to be seen.

Current Electricity HI NGSS 5-PS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop a model to describe that matter is made of particles too small to be seen.

Waves and Energy HI NGSS 5-PS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop a model to describe that matter is made of particles too small to be seen.

Pitch and Volume HI NGSS 5-PS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop a model to describe that matter is made of particles too small to be seen.

Conservation of Matter HI NGSS 5-PS1-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.

Magnets and Magnetic Fields HI NGSS 5-PS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and measurements to identify materials based on their properties. 

Properties of Minerals HI NGSS 5-PS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations and measurements to identify materials based on their properties.

Electrical Currents and Circuits HI NGSS 5-PS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations and measurements to identify materials based on their properties.

Engineering Sound Barriers HI NGSS 5-PS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations and measurements to identify materials based on their properties.

Engineering Library Scopes HI NGSS 5-PS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations and measurements to identify materials based on their properties.

Engineering Electric Cars HI NGSS 5-PS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations and measurements to identify materials based on their properties.

Engineering Water Prisms HI NGSS 5-PS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and measurements to identify materials based on their properties.

Static Charge HI NGSS 5-PS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and measurements to identify materials based on their properties. 

Engineering Pick-and-Place Devices HI NGSS 5-PS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and measurements to identify materials based on their properties. 

Engineering Hearing Toys HI NGSS 5-PS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and measurements to identify materials based on their properties.

Plate Tectonics and Landform Patterns HI NGSS 5-PS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations and measurements to identify materials based on their properties.

Magnets and Motors HI NGSS 5-PS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations and measurements to identify materials based on their properties.

Sound Energy and Materials HI NGSS 5-PS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations and measurements to identify materials based on their properties.

Current Electricity HI NGSS 5-PS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

 Make observations and measurements to identify materials based on their properties.

Pitch and Volume HI NGSS 5-PS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations and measurements to identify materials based on their properties.

Engineering Information Transfer HI NGSS 5-PS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations and measurements to identify materials based on their properties.

Water Erosion HI NGSS 5-PS1-4 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

Weathering Rocks HI NGSS 5-PS1-4 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

Conservation of Matter HI NGSS 5-PS1-4 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

Energy Transfer and Levers HI NGSS 5-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Balanced vs. Unbalanced Forces HI NGSS 5-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Motion in the Solar System HI NGSS 5-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Engineering Launchers HI NGSS 5-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Engineering Skyscrapers HI NGSS 5-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Scaling the Sun Earth Moon System HI NGSS 5-PS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Engineering Roller Coasters HI NGSS 5-PS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Forces and Materials HI NGSS 5-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Support an argument that the gravitational force exerted by Earth on objects is directed down.

Forces and Levers HI NGSS 5-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 Support an argument that the gravitational force exerted by Earth on objects is directed down.
Energy from the Sun HI NGSS 5-PS3-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

Energy and Matter in Food Webs HI NGSS 5-PS3-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

Food Webs HI NGSS 5-PS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

Engineering Marble Movers HI NGSS K-2-ETS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Who Scientists Are HI NGSS K-2-ETS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Windy Weather HI NGSS K-2-ETS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool

Controlling Erosion HI NGSS K-2-ETS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Sunlight and Engineering HI NGSS K-2-ETS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Engineering Hand Pollinators HI NGSS K-2-ETS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Engineering Owl Shelters HI NGSS K-2-ETS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Engineering Boats HI NGSS K-2-ETS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Engineering Litter Collectors HI NGSS K-2-ETS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Engineering Dams HI NGSS K-2-ETS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Engineering Communication Devices HI NGSS K-2-ETS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Engineering Dams HI NGSS K-2-ETS1-2 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Who Scientists Are HI NGSS K-2-ETS1-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Windy Weather HI NGSS K-2-ETS1-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

 Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem

Controlling Erosion HI NGSS K-2-ETS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Sunlight and Engineering HI NGSS K-2-ETS1-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Engineering Hand Pollinators HI NGSS K-2-ETS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Engineering Marble Movers HI NGSS K-2-ETS1-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Engineering Owl Shelters HI NGSS K-2-ETS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Engineering Boats HI NGSS K-2-ETS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Engineering Litter Collectors HI NGSS K-2-ETS1-2 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Engineering Communication Devices HI NGSS K-2-ETS1-2 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Controlling Erosion HI NGSS K-2-ETS1-3 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

Engineering Litter Collectors HI NGSS K-2-ETS1-3 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Engineering Dams HI NGSS K-2-ETS1-3 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Who Scientists Are HI NGSS K-2-ETS1-3 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

Sunlight and Engineering HI NGSS K-2-ETS1-3 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

Engineering Hand Pollinators HI NGSS K-2-ETS1-3 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Engineering Marble Movers HI NGSS K-2-ETS1-3 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

Engineering Owl Shelters HI NGSS K-2-ETS1-3 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Engineering Boats HI NGSS K-2-ETS1-3 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Engineering Communication Devices HI NGSS K-2-ETS1-3 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.
Weather Patterns HI NGSS K-ESS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use and share observations of local weather conditions to describe patterns over time.

Who Scientists Are HI NGSS K-ESS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use and share observations of local weather conditions to describe patterns over time.

Windy Weather HI NGSS K-ESS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use and share observations of local weather conditions to describe patterns over time

Heat and Water HI NGSS K-ESS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use and share observations of local weather conditions to describe patterns over time.

The Water Cycle HI NGSS K-ESS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use and share observations of local weather conditions to describe patterns over time.

Weather and Seasons HI NGSS K-ESS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use and share observations of local weather conditions to describe patterns over time.

Growing Plants HI NGSS K-ESS2-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs.

Animal Habitats HI NGSS K-ESS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live

Living Things in Their Habitat HI NGSS K-ESS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live

Extreme Weather HI NGSS K-ESS3-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.

Windy Weather HI NGSS K-ESS3-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.

Who Scientists Are HI NGSS K-ESS3-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.

Earth and Human Activity HI NGSS K-ESS3-3 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.

Human Shelter HI NGSS K-ESS3-3 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.

Parts of Plants HI NGSS K-LS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Germinating Seeds HI NGSS K-LS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Characteristics of Living Things HI NGSS K-LS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Living, Nonliving, and Once-Living HI NGSS K-LS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Growing Plants HI NGSS K-LS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Animal Habitats HI NGSS K-LS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Living Things in Their Habitat HI NGSS K-LS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Pushes and Pulls HI NGSS K-PS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

Forces and Motion HI NGSS K-PS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

Friction and Motion HI NGSS K-PS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

Engineering Marble Movers HI NGSS K-PS2-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.

Weather Patterns HI NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface.

Weather and Seasons HI NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface.

Who Scientists Are HI NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface

The Water Cycle HI NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface

Sunlight and Temperature HI NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface

Sun and Shade HI NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface

Color and Temperature HI NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface

Sunlight and Engineering HI NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface

Who Scientists Are HI NGSS K-PS3-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use tools and materials provided to design and build a structure that will reduce the warming effect of sunlight on Earth’s surface.

Sunlight and Engineering HI NGSS K-PS3-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use tools and materials provided to design and build a structure that will reduce the warming effect of sunlight on Earth’s surface.

Earth-Sun-Moon System HI NGSS MS-ESS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.
Sun-Earth-Moon System HI NGSS MS-ESS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop and use a model of the Earth-Sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons

Sun Angle and Temperature HI NGSS MS-ESS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. 
Climate Analysis HI NGSS MS-ESS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Develop and use a model of the Earth-Sun-moon system to explain the cyclical patterns of lunar phases, eclipses of the sun and moon, and seasons.
Sun-Earth-Moon System HI NGSS MS-ESS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.

Earth's Place in the Solar System HI NGSS MS-ESS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.
Earth's Place in the Solar System HI NGSS MS-ESS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8  Analyze and interpret data to determine scale properties of objects in the solar system.
Animal Diversity HI NGSS MS-ESS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.

Earth's Geologic History HI NGSS MS-ESS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.

Climate Analysis HI NGSS MS-ESS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history.
Fossils and Tectonic Plate Motion HI NGSS MS-ESS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history.
The Rock Cycle HI NGSS MS-ESS2-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Mass and Heat Transfer HI NGSS MS-ESS2-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Earth Materials HI NGSS MS-ESS2-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Glacier Motion HI NGSS MS-ESS2-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use a model to illustrate that energy from Earth’s interior drives convection that cycles Earth’s crust, leading to melting, crystallization, weathering, and deformation of large rock formations, including generation of ocean seafloor at ridges, submergence of ocean seafloor at trenches, mountain building, and active volcanic chains.

Groundwater Flow HI NGSS MS-ESS2-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

The Rock Cycle HI NGSS MS-ESS2-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Groundwater Flow HI NGSS MS-ESS2-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales.

Weathering and Erosion HI NGSS MS-ESS2-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Earth Materials HI NGSS MS-ESS2-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Glacier Motion HI NGSS MS-ESS2-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales.
Climate Analysis HI NGSS MS-ESS2-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7  Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales.
Earth Materials HI NGSS MS-ESS2-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

Earth's Geologic History HI NGSS MS-ESS2-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

Fossils and Tectonic Plate Motion HI NGSS MS-ESS2-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.
Ocean Salinity and Density HI NGSS MS-ESS2-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

The Water Cycle and Earth's Systems HI NGSS MS-ESS2-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

Sun Angle and Temperature HI NGSS MS-ESS2-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.
Convection and Weather HI NGSS MS-ESS2-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions.

Groundwater Flow HI NGSS MS-ESS2-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.

Weathering and Erosion HI NGSS MS-ESS2-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

Climate Analysis HI NGSS MS-ESS2-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.
Glacier Motion HI NGSS MS-ESS2-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.
Groundwater Contamination HI NGSS MS-ESS2-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.

The Water Cycle and Earth's Systems HI NGSS MS-ESS2-6 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Ocean Salinity and Density HI NGSS MS-ESS2-6 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Earth’s Climate HI NGSS MS-ESS2-6 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Sun Angle and Temperature HI NGSS MS-ESS2-6 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.
Convection and Weather HI NGSS MS-ESS2-6 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Natural Resources HI NGSS MS-ESS3-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.

Groundwater Contamination HI NGSS MS-ESS3-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.

Groundwater Flow HI NGSS MS-ESS3-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

Earthquake-Resistant Skyscrapers HI NGSS MS-ESS3-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

Engineering Rain Harvesting Systems HI NGSS MS-ESS3-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

Groundwater Contamination HI NGSS MS-ESS3-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

Engineering Water Filtration Devices HI NGSS MS-ESS3-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

Greenhouse Effect HI NGSS MS-ESS3-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.

Groundwater Contamination HI NGSS MS-ESS3-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.

Engineering Rain Harvesting Systems HI NGSS MS-ESS3-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

Greenhouse Effect HI NGSS MS-ESS3-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Ask questions to clarify evidence of the factors that have caused the rise of global temperatures over the past.

Climate Analysis HI NGSS MS-ESS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
Engineering Seismograph HI NGSS MS-ETS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Shoreline Barriers HI NGSS MS-ETS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Earthquake-Resistant Skyscrapers HI NGSS MS-ETS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Thermal Control HI NGSS MS-ETS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Water Filtration Devices HI NGSS MS-ETS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Vehicles HI NGSS MS-ETS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Speakers HI NGSS MS-ETS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Wind Turbines HI NGSS MS-ETS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Meteoroid Shields HI NGSS MS-ETS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Engineering Greenhouses HI NGSS MS-ETS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Rain Harvesting Systems HI NGSS MS-ETS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Chemical Cold Pack Reactions HI NGSS MS-ETS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Bridges HI NGSS MS-ETS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Speakers HI NGSS MS-ETS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Thermal Control HI NGSS MS-ETS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Wind Turbines HI NGSS MS-ETS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Earthquake-Resistant Skyscrapers HI NGSS MS-ETS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Greenhouses HI NGSS MS-ETS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Vehicles HI NGSS MS-ETS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

 Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Seismograph HI NGSS MS-ETS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Shoreline Barriers HI NGSS MS-ETS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Meteoroid Shields HI NGSS MS-ETS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Engineering Rain Harvesting Systems HI NGSS MS-ETS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Chemical Cold Pack Reactions HI NGSS MS-ETS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Bridges HI NGSS MS-ETS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Water Filtration Devices HI NGSS MS-ETS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Seismograph HI NGSS MS-ETS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Shoreline Barriers HI NGSS MS-ETS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Thermal Control HI NGSS MS-ETS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Water Filtration Devices HI NGSS MS-ETS1-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Vehicles HI NGSS MS-ETS1-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Speakers HI NGSS MS-ETS1-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Wind Turbines HI NGSS MS-ETS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Meteoroid Shields HI NGSS MS-ETS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Engineering Greenhouses HI NGSS MS-ETS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Rain Harvesting Systems HI NGSS MS-ETS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Chemical Cold Pack Reactions HI NGSS MS-ETS1-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Earthquake-Resistant Skyscrapers HI NGSS MS-ETS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Bridges HI NGSS MS-ETS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Water Filtration Devices HI NGSS MS-ETS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Vehicles HI NGSS MS-ETS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Speakers HI NGSS MS-ETS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Chemical Cold Pack Reactions HI NGSS MS-ETS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Earthquake-Resistant Skyscrapers HI NGSS MS-ETS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Bridges HI NGSS MS-ETS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Thermal Control HI NGSS MS-ETS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Meteoroid Shields HI NGSS MS-ETS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Engineering Seismograph HI NGSS MS-ETS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Wind Turbines HI NGSS MS-ETS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Shoreline Barriers HI NGSS MS-ETS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Greenhouses HI NGSS MS-ETS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

 Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Rain Harvesting Systems HI NGSS MS-ETS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Sucrose and Heart Rate HI NGSS MS-LS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8  Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
Animal and Plant Cell Structure and Function HI NGSS MS-LS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Comparing Cells HI NGSS MS-LS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
Living Things: Prokaryotes and Eukaryotes HI NGSS MS-LS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Mitosis in Animal and Plant Cells HI NGSS MS-LS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Cellular Respiration HI NGSS MS-LS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells
Observing and Comparing Cells HI NGSS MS-LS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Organ System Structure and Function HI NGSS MS-LS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Cell Structure and Function HI NGSS MS-LS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Animal and Plant Cell Structure and Function HI NGSS MS-LS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Observing and Comparing Cells HI NGSS MS-LS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

The Cell Membrane HI NGSS MS-LS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Photosynthesis HI NGSS MS-LS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Comparing Cells HI NGSS MS-LS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.
Cell Structure and Function HI NGSS MS-LS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

Sucrose and Heart Rate HI NGSS MS-LS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.
The Nervous System and Senses HI NGSS MS-LS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

Organ System Structure and Function HI NGSS MS-LS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

Natural Selection HI NGSS MS-LS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Use arguments based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Animal and Plant Cell Structure and Function HI NGSS MS-LS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Chromosomes and Mutations HI NGSS MS-LS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Reproduction HI NGSS MS-LS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Rocky Shore Ecosystems HI NGSS MS-LS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Sea Star Structures HI NGSS MS-LS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Intertidal Zone Temperature Change HI NGSS MS-LS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Forest Food Web HI NGSS MS-LS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Reproduction and Fungi Structures HI NGSS MS-LS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. 

The Cell Membrane HI NGSS MS-LS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. 

Natural Selection HI NGSS MS-LS1-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. 

HI NGSS MS-LS1-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Photosynthesis HI NGSS MS-LS1-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

DNA and Proteins HI NGSS MS-LS1-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. 

Life on Earth HI NGSS MS-LS1-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Photosynthesis and Oil Spills HI NGSS MS-LS1-6 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Photosynthesis HI NGSS MS-LS1-6 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms

Comparing Cells HI NGSS MS-LS1-6 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8  Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.
Food and Energy HI NGSS MS-LS1-6 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Rocky Shore Ecosystems HI NGSS MS-LS1-6 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Cellular Respiration HI NGSS MS-LS1-7 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.
Food and Energy HI NGSS MS-LS1-7 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.

Sucrose and Heart Rate HI NGSS MS-LS1-8 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.

The Nervous System and Senses HI NGSS MS-LS1-8 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Gather and synthesize information that sensory receptors respond to stimul

Food Webs HI NGSS MS-LS2-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

HI NGSS MS-LS2-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Rocky Shore Ecosystems HI NGSS MS-LS2-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Food Webs HI NGSS MS-LS2-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Rocky Shore Ecosystems HI NGSS MS-LS2-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Forest Food Web HI NGSS MS-LS2-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Food Webs HI NGSS MS-LS2-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Photosynthesis and Oil Spills HI NGSS MS-LS2-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Rocky Shore Ecosystems HI NGSS MS-LS2-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

HI NGSS MS-LS2-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Food Webs HI NGSS MS-LS2-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Rocky Shore Ecosystems HI NGSS MS-LS2-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Photosynthesis and Oil Spills HI NGSS MS-LS2-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Engineering Shoreline Barriers HI NGSS MS-LS2-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

Engineering Water Filtration Devices HI NGSS MS-LS2-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

Natural Selection HI NGSS MS-LS3-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

DNA and Mutations HI NGSS MS-LS3-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Animal Diversity HI NGSS MS-LS3-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Heredity and Traits HI NGSS MS-LS3-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Chromosomes and Mutations HI NGSS MS-LS3-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Reproduction and Fungi Structures HI NGSS MS-LS3-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Heredity and Traits HI NGSS MS-LS3-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Animal Diversity HI NGSS MS-LS3-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Reproduction HI NGSS MS-LS3-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Inheritance and Variation of Traits HI NGSS MS-LS3-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Reproduction HI NGSS MS-LS3-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop and use a model to show why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Life on Earth HI NGSS MS-LS4-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

Animal Diversity HI NGSS MS-LS4-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

Comparing Cells HI NGSS MS-LS4-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

Fossils and Tectonic Plate Motion HI NGSS MS-LS4-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.
Animal Diversity HI NGSS MS-LS4-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Comparing Cells HI NGSS MS-LS4-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Life on Earth HI NGSS MS-LS4-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Animal Diversity HI NGSS MS-LS4-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

DNA and Mutations HI NGSS MS-LS4-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

Life on Earth HI NGSS MS-LS4-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

Natural Selection HI NGSS MS-LS4-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

Natural Selection HI NGSS MS-LS4-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.

Heredity and Traits HI NGSS MS-LS4-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.

Natural Selection HI NGSS MS-LS4-6 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

The Rock Cycle HI NGSS MS-PS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop models to describe the atomic composition of simple molecules and extended structures.

Atoms HI NGSS MS-PS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop models to describe the atomic composition of simple molecules and extended structures

Molecules HI NGSS MS-PS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop models to describe the atomic composition of simple molecules and extended structures

Chromosomes and Mutations HI NGSS MS-PS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop models to describe the atomic composition of simple molecules and extended structures.

Natural Resources HI NGSS MS-PS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop models to describe the atomic composition of simple molecules and extended structures.

Chemical Reactions HI NGSS MS-PS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop models to describe the atomic composition of simple molecules and extended structures.
Polymer Structure and Function HI NGSS MS-PS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop models to describe the atomic composition of simple molecules and extended structures.
Thermal Energy and Particle Motion HI NGSS MS-PS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop models to describe the atomic composition of simple molecules and extended structures.

Renewable Energy HI NGSS MS-PS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7  Develop models to describe the atomic composition of simple molecules and extended structures.
Molecules HI NGSS MS-PS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Chemical Reactions HI NGSS MS-PS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Chemical Reactions HI NGSS MS-PS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Renewable Energy HI NGSS MS-PS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.
Engineering Chemical Cold Pack Reactions HI NGSS MS-PS1-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Polymer Structure and Function HI NGSS MS-PS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.
Natural Resources HI NGSS MS-PS1-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Chemical Reactions HI NGSS MS-PS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Mass and Motion HI NGSS MS-PS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Earthquake-Resistant Skyscrapers HI NGSS MS-PS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Chemical Reactions HI NGSS MS-PS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. 
Molecules HI NGSS MS-PS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Mass and Heat Transfer HI NGSS MS-PS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Molecules HI NGSS MS-PS1-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Chemical Reactions HI NGSS MS-PS1-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Chemical Reactions HI NGSS MS-PS1-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

The Rock Cycle HI NGSS MS-PS1-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Chemical Reactions HI NGSS MS-PS1-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Renewable Energy HI NGSS MS-PS1-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7  Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.
Engineering Chemical Cold Pack Reactions HI NGSS MS-PS1-6 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.

Chemical Reactions HI NGSS MS-PS2-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Mass and Motion HI NGSS MS-PS2-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.

Engineering Meteoroid Shields HI NGSS MS-PS2-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.
Engineering Meteoroid Shields HI NGSS MS-PS2-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
Forces and Motion HI NGSS MS-PS2-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

Engineering Vehicles HI NGSS MS-PS2-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

Engineering Seismograph HI NGSS MS-PS2-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

Engineering Wind Turbines HI NGSS MS-PS2-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. 

Mass and Motion HI NGSS MS-PS2-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

Electric and Magnetic Interactions HI NGSS MS-PS2-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Magnetism and Energy HI NGSS MS-PS2-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Engineering Speakers HI NGSS MS-PS2-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Sun-Earth-Moon System HI NGSS MS-PS2-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Sea Star Structures HI NGSS MS-PS2-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Engineering Meteoroid Shields HI NGSS MS-PS2-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
Energy Transformation HI NGSS MS-PS2-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Earth-Sun-Moon System HI NGSS MS-PS2-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
Earth's Place in the Solar System HI NGSS MS-PS2-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
Glacier Motion HI NGSS MS-PS2-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use evidence to support the claim that gravitational forces between objects are attractive and are only noticeable when one or both of the objects have a very large mass.

Magnetism and Energy HI NGSS MS-PS2-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Engineering Speakers HI NGSS MS-PS2-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Electric and Magnetic Interactions HI NGSS MS-PS2-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Mass and Energy Transfer HI NGSS MS-PS3-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. 

Mass, Speed, and Kinetic Energy HI NGSS MS-PS3-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

Mass and Motion HI NGSS MS-PS3-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

Engineering Speakers HI NGSS MS-PS3-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Magnetism and Energy HI NGSS MS-PS3-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Energy Transformation HI NGSS MS-PS3-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Chemical Reactions HI NGSS MS-PS3-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. 

Engineering Thermal Control HI NGSS MS-PS3-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Mass and Heat Transfer HI NGSS MS-PS3-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Engineering Greenhouses HI NGSS MS-PS3-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Chemical Reactions HI NGSS MS-PS3-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Intertidal Zone Temperature Change HI NGSS MS-PS3-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Thermal Energy and Particle Motion HI NGSS MS-PS3-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Mass and Heat Transfer HI NGSS MS-PS3-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Chemical Reactions HI NGSS MS-PS3-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. *In this unit, students focus on the relationship between the energy transferred and the change in the average kinetic energy of the substance’s particles. They will incorporate the other aspects of the standard in later units.

Mass, Speed, and Kinetic Energy HI NGSS MS-PS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Engineering Wind Turbines HI NGSS MS-PS3-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Magnetism and Energy HI NGSS MS-PS3-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Mass and Energy Transfer HI NGSS MS-PS3-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Chemical Reactions HI NGSS MS-PS3-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Engineering Thermal Control HI NGSS MS-PS3-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Intertidal Zone Temperature Change HI NGSS MS-PS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Forces and Motion HI NGSS MS-PS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Engineering Vehicles HI NGSS MS-PS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Electric and Magnetic Interactions HI NGSS MS-PS3-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Chemical Reactions HI NGSS MS-PS3-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Polymer Structure and Function HI NGSS MS-PS3-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Thermal Energy and Particle Motion HI NGSS MS-PS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Mass and Motion HI NGSS MS-PS3-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Energy Transformation HI NGSS MS-PS3-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Mass and Heat Transfer HI NGSS MS-PS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Chemical Reactions HI NGSS MS-PS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Wave Properties and Signals HI NGSS MS-PS4-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

Engineering Seismograph HI NGSS MS-PS4-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

Mechanical Waves and Energy HI NGSS MS-PS4-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

Thermal Energy and Particle Motion HI NGSS MS-PS4-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Light and Information Transfer HI NGSS MS-PS4-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

Wave Properties and Signals HI NGSS MS-PS4-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

Wave Properties and Signals HI NGSS MS-PS4-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

Communication Systems HI NGSS MS-PS4-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

Light and Information Transfer HI NGSS MS-PS4-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

free anchor chart-knowatom

Learn How to Get Started Using KnowAtom in Your School

Hawaii Science Standards | KnowAtom Lesson Alignment Guide

Phenomena Based Lessons Aligned to NGSS.

Science Lesson : Earth and Moon Patterns
State: HI
Standards: NGSS
Performance Expectation:

Use observations of the sun, moon, and stars to describe patterns that can be predicted.

State: HI
Standards: NGSS
Performance Expectation:

Use observations of the sun, moon, and stars to describe patterns that can be predicted.

State: HI
Standards: NGSS
Performance Expectation:

Make observations at different times of year to relate the amount of daylight to the time of year.

Science Lesson : Seasonal Patterns
State: HI
Standards: NGSS
Performance Expectation:

Make observations at different times of year to relate the amount of daylight to the time of year.

State: HI
Standards: NGSS
Performance Expectation:

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

State: HI
Standards: NGSS
Performance Expectation:

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Science Lesson : Plant Structures
State: HI
Standards: NGSS
Performance Expectation:

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Science Lesson : Ant Behavior and Food
State: HI
Standards: NGSS
Performance Expectation:

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

State: HI
Standards: NGSS
Performance Expectation:

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

State: HI
Standards: NGSS
Performance Expectation:

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Science Lesson : Engineering Dams
State: HI
Standards: NGSS
Performance Expectation:

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

State: HI
Standards: NGSS
Performance Expectation:

Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.

Science Lesson : Plant Structures
State: HI
Standards: NGSS
Performance Expectation:

Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.

State: HI
Standards: NGSS
Performance Expectation:

Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.

State: HI
Standards: NGSS
Performance Expectation:

Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents. *Students focus on animals in this unit.

State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.

Science Lesson : Light
State: HI
Standards: NGSS
Performance Expectation:

Make observations to construct an evidence-based account that objects in darkness can be seen only when illuminated.

Science Lesson : Sounds and Senses
State: HI
Standards: NGSS
Performance Expectation: Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.
State: HI
Standards: NGSS
Performance Expectation: Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.
Science Lesson : Materials and Light
State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct investigations to determine the effect of placing objects made with different materials in the path of a beam of light.

Science Lesson : Earth Events
State: HI
Standards: NGSS
Performance Expectation:

Use information from several sources to provide evidence that Earth events can occur quickly or slowly.

Science Lesson : Controlling Erosion
State: HI
Standards: NGSS
Performance Expectation:

Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.

Science Lesson : Mapping Land and Water
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to represent the shapes and kinds of land and bodies of water in an area.

Science Lesson : Water Flow
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.

Science Lesson : How Plants Grow
State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to determine if plants need sunlight and water to grow.

Science Lesson : Flowers
State: HI
Standards: NGSS
Performance Expectation:

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

Science Lesson : Butterfly Life Cycle
State: HI
Standards: NGSS
Performance Expectation:

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

State: HI
Standards: NGSS
Performance Expectation:

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

State: HI
Standards: NGSS
Performance Expectation:

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

Science Lesson : Habitats
State: HI
Standards: NGSS
Performance Expectation:

Make observations of plants and animals to compare the diversity of life in different habitats.

State: HI
Standards: NGSS
Performance Expectation:

Make observations of plants and animals to compare the diversity of life in different habitats.

Science Lesson : Property of Materials
State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.

Science Lesson : Matter and Properties
State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.

State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. 

Science Lesson : Floating and Sinking
State: HI
Standards: NGSS
Performance Expectation:

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Science Lesson : Engineering Boats
State: HI
Standards: NGSS
Performance Expectation:

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Science Lesson : Property of Materials
State: HI
Standards: NGSS
Performance Expectation:

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

State: HI
Standards: NGSS
Performance Expectation:

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Science Lesson : Action-Reaction Forces
State: HI
Standards: NGSS
Performance Expectation:

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Science Lesson : Friction
State: HI
Standards: NGSS
Performance Expectation:

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

State: HI
Standards: NGSS
Performance Expectation:

Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object.

Science Lesson : Matter and Properties
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.

Science Lesson : Water Flow
State: HI
Standards: NGSS
Performance Expectation:

Obtain information to identify where water is found on Earth and that it can be solid or liquid.

State: HI
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: HI
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or want that includes specified criteria for success and constraints on materials, time, or cost.

Science Lesson : Engineering Launchers
State: HI
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: HI
Standards: NGSS
Performance Expectation:

 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: HI
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: HI
Standards: NGSS
Performance Expectation:

 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: HI
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: HI
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: HI
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: HI
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Science Lesson : Engineering Skyscrapers
State: HI
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: HI
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: HI
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem, based on how well each is likely to meet the criteria and constraints of the problem.

Science Lesson : Engineering Launchers
State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Science Lesson : Engineering Skyscrapers
State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: HI
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: HI
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: HI
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Science Lesson : Engineering Launchers
State: HI
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Science Lesson : Engineering Skyscrapers
State: HI
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. 

State: HI
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: HI
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: HI
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: HI
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: HI
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: HI
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: HI
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: HI
Standards: NGSS
Performance Expectation:

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

Science Lesson : Weather and Climate
State: HI
Standards: NGSS
Performance Expectation:

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

State: HI
Standards: NGSS
Performance Expectation:

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

Science Lesson : Weather and Climate
State: HI
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe climates in different regions of the world.

Science Lesson : Energy from the Sun
State: HI
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe climates in different regions of the world. 

Science Lesson : Heat and Evaporation
State: HI
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe climates in different regions of the world.

State: HI
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe climates in different regions of the world.

State: HI
Standards: NGSS
Performance Expectation:

Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.

State: HI
Standards: NGSS
Performance Expectation:

Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.

State: HI
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe climates in different regions of the world.

Science Lesson : Life Cycles
State: HI
Standards: NGSS
Performance Expectation:

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

State: HI
Standards: NGSS
Performance Expectation:

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

Science Lesson : Frog Life Cycle
State: HI
Standards: NGSS
Performance Expectation:

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

Science Lesson : Environmental Change
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument that some animals form groups that help members survive.

Science Lesson : Life Cycles
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument that some animals form groups that help members survive.

Science Lesson : Selecting Traits
State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.

Science Lesson : Heredity and Traits
State: HI
Standards: NGSS
Performance Expectation:

 Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.

Science Lesson : Ecosystem Dynamics
State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.

Science Lesson : Selecting Traits
State: HI
Standards: NGSS
Performance Expectation:

Use evidence to support the explanation that traits can be influenced by the environment.

Science Lesson : Ecosystem Dynamics
State: HI
Standards: NGSS
Performance Expectation:

Use evidence to support the explanation that traits can be influenced by the environment.

Science Lesson : Heredity and Traits
State: HI
Standards: NGSS
Performance Expectation:

 Use evidence to support the explanation that traits can be influenced by the environment.

State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.

State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.

Science Lesson : Selecting Traits
State: HI
Standards: NGSS
Performance Expectation:

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

Science Lesson : Ecosystem Dynamics
State: HI
Standards: NGSS
Performance Expectation:

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

Science Lesson : Heredity and Traits
State: HI
Standards: NGSS
Performance Expectation:

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

State: HI
Standards: NGSS
Performance Expectation:

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Science Lesson : Ecosystem Dynamics
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Science Lesson : Selecting Traits
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Science Lesson : Energy from the Sun
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Science Lesson : Environmental Change
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Science Lesson : Selecting Traits
State: HI
Standards: NGSS
Performance Expectation:

 Make a claim about the merit of a solution to a problem caused when the environment changes and the type of plants and animals that live there may change.

Science Lesson : Environmental Change
State: HI
Standards: NGSS
Performance Expectation:

Make a claim about the merit of a solution to a problem caused when the environment changes and the type of plants and animals that live there may change.

State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Science Lesson : Forces and Levers
State: HI
Standards: NGSS
Performance Expectation: Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
Science Lesson : Comparing Forces
State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Science Lesson : Engineering Launchers
State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Science Lesson : Energy and Collisions
State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Science Lesson : Windmill Forces
State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Science Lesson : Patterns in Motion
State: HI
Standards: NGSS
Performance Expectation:

Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion.

Science Lesson : Forces and Materials
State: HI
Standards: NGSS
Performance Expectation:

 Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Science Lesson : Engineering Skyscrapers
State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

State: HI
Standards: NGSS
Performance Expectation:

Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion.

Science Lesson : Static Charge
State: HI
Standards: NGSS
Performance Expectation:

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

State: HI
Standards: NGSS
Performance Expectation:

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

State: HI
Standards: NGSS
Performance Expectation:

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Science Lesson : Magnets and Motors
State: HI
Standards: NGSS
Performance Expectation:

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Science Lesson : Current Electricity
State: HI
Standards: NGSS
Performance Expectation:

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

State: HI
Standards: NGSS
Performance Expectation:

Define a simple design problem that can be solved by applying scientific ideas about magnets.

State: HI
Standards: NGSS
Performance Expectation:

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.

Science Lesson : Water Erosion
State: HI
Standards: NGSS
Performance Expectation:

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.

State: HI
Standards: NGSS
Performance Expectation:

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.

Science Lesson : Weathering Rocks
State: HI
Standards: NGSS
Performance Expectation:

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. *In this unit, students focus on the role of weathering in erosion, deposition, and Earth’s changing landscape.

State: HI
Standards: NGSS
Performance Expectation:

Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

Science Lesson : Water Erosion
State: HI
Standards: NGSS
Performance Expectation:

Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

Science Lesson : Weathering Rocks
State: HI
Standards: NGSS
Performance Expectation:

Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data from maps to describe patterns of Earth’s features.

State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data from maps to describe patterns of Earth’s features.  how different kinds of rock are mechanically weathered, analyzing how the sediment caused by the weathering can then be eroded. *In this unit, students focus on patterns in the locations of volcanoes and earthquakes.

State: HI
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

Science Lesson : Water Erosion
State: HI
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

State: HI
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.

State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.

Science Lesson : Heredity and Traits
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

State: HI
Standards: NGSS
Performance Expectation:

 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Plant and Animal Cells
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Plant Growth
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Plant Structures
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Frog Life Cycle
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Mealworm Senses
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Selecting Traits
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Energy from the Sun
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Mealworm Senses
State: HI
Standards: NGSS
Performance Expectation:

Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.

Science Lesson : Patterns in Motion
State: HI
Standards: NGSS
Performance Expectation:

Use evidence to construct an explanation relating the speed of an object to the energy of that object. *Students are introduced to the relationship between energy and speed in this unit.

Science Lesson : Energy and Collisions
State: HI
Standards: NGSS
Performance Expectation:

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. *In this unit, students are introduced to the concept of patterns caused by the relative motions of the sun, moon, and Earth.

State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Engineering Launchers
State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Current Electricity
State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Friction and Motion
State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Magnets and Motors
State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Sound Energy
State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Windmill Forces
State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.*Students are introduced to energy transfer in this unit by focusing on moving substances. They will explore other forms of energy transfer in later units. 

Science Lesson : Waves and Energy
State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Pitch and Volume
State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Forces and Levers
State: HI
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Energy and Collisions
State: HI
Standards: NGSS
Performance Expectation:

Ask questions and predict outcomes about the changes in energy that occur when objects collide.

Science Lesson : Engineering Launchers
State: HI
Standards: NGSS
Performance Expectation:

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

State: HI
Standards: NGSS
Performance Expectation:

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. 

State: HI
Standards: NGSS
Performance Expectation:

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Science Lesson : Magnets and Motors
State: HI
Standards: NGSS
Performance Expectation:

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

State: HI
Standards: NGSS
Performance Expectation:

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

State: HI
Standards: NGSS
Performance Expectation:

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Science Lesson : Sound Energy
State: HI
Standards: NGSS
Performance Expectation:

Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.

Science Lesson : Waves and Energy
State: HI
Standards: NGSS
Performance Expectation:

Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.

State: HI
Standards: NGSS
Performance Expectation:

Generate and compare multiple solutions that use patterns to transfer information.

State: HI
Standards: NGSS
Performance Expectation:

Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth. 

State: HI
Standards: NGSS
Performance Expectation:

Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth.

State: HI
Standards: NGSS
Performance Expectation:

Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth.

Science Lesson : Patterns
State: HI
Standards: NGSS
Performance Expectation:

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.

State: HI
Standards: NGSS
Performance Expectation:

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. *In this unit, students are introduced to the concept of patterns caused by the relative motions of the sun, moon, and Earth.

State: HI
Standards: NGSS
Performance Expectation:

 Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Science Lesson : Heat and Evaporation
State: HI
Standards: NGSS
Performance Expectation:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Science Lesson : Weathering Rocks
State: HI
Standards: NGSS
Performance Expectation:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Science Lesson : Earth's Water
State: HI
Standards: NGSS
Performance Expectation:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Science Lesson : Energy from the Sun
State: HI
Standards: NGSS
Performance Expectation:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Science Lesson : Environmental Change
State: HI
Standards: NGSS
Performance Expectation:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Science Lesson : Heat and Evaporation
State: HI
Standards: NGSS
Performance Expectation:

Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

Science Lesson : Earth's Water
State: HI
Standards: NGSS
Performance Expectation:

Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

State: HI
Standards: NGSS
Performance Expectation:

Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

State: HI
Standards: NGSS
Performance Expectation:

Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

State: HI
Standards: NGSS
Performance Expectation:

Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

State: HI
Standards: NGSS
Performance Expectation:

Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

State: HI
Standards: NGSS
Performance Expectation:

Support an argument that plants get the materials they need for growth chiefly from air and water.

Science Lesson : Plant Growth
State: HI
Standards: NGSS
Performance Expectation:

Support an argument that plants get the materials they need for growth chiefly from air and water.

Science Lesson : Food Webs
State: HI
Standards: NGSS
Performance Expectation:

Support an argument that plants get the materials they need for growth chiefly from air and water.

Science Lesson : Plant Structures
State: HI
Standards: NGSS
Performance Expectation:

Support an argument that plants get the materials they need for growth chiefly from air and water.

Science Lesson : Energy from the Sun
State: HI
Standards: NGSS
Performance Expectation:

Support an argument that plants get the materials they need for growth chiefly from air and water.

Science Lesson : Decomposition
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Science Lesson : Ecosystem Dynamics
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Science Lesson : Energy from the Sun
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Science Lesson : Heat and Matter
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

State: HI
Standards: NGSS
Performance Expectation:

 Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Static Charge
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen. 

Science Lesson : Conservation of Matter
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Structure of Matter
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Properties of Matter
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Sound Energy
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Current Electricity
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Waves and Energy
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Pitch and Volume
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Conservation of Matter
State: HI
Standards: NGSS
Performance Expectation:

Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.

State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties. 

Science Lesson : Properties of Minerals
State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

Science Lesson : Static Charge
State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties. 

State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties. 

State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

Science Lesson : Magnets and Motors
State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

Science Lesson : Current Electricity
State: HI
Standards: NGSS
Performance Expectation:

 Make observations and measurements to identify materials based on their properties.

Science Lesson : Pitch and Volume
State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: HI
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

Science Lesson : Water Erosion
State: HI
Standards: NGSS
Performance Expectation:

Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

Science Lesson : Weathering Rocks
State: HI
Standards: NGSS
Performance Expectation:

Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

Science Lesson : Conservation of Matter
State: HI
Standards: NGSS
Performance Expectation:

Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

State: HI
Standards: NGSS
Performance Expectation:

Support an argument that the gravitational force exerted by Earth on objects is directed down.

State: HI
Standards: NGSS
Performance Expectation:

Support an argument that the gravitational force exerted by Earth on objects is directed down.

State: HI
Standards: NGSS
Performance Expectation:

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Science Lesson : Engineering Launchers
State: HI
Standards: NGSS
Performance Expectation:

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Science Lesson : Engineering Skyscrapers
State: HI
Standards: NGSS
Performance Expectation:

Support an argument that the gravitational force exerted by Earth on objects is directed down.

State: HI
Standards: NGSS
Performance Expectation:

Support an argument that the gravitational force exerted by Earth on objects is directed down.

State: HI
Standards: NGSS
Performance Expectation:

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Science Lesson : Forces and Materials
State: HI
Standards: NGSS
Performance Expectation:

 Support an argument that the gravitational force exerted by Earth on objects is directed down.

Science Lesson : Forces and Levers
State: HI
Standards: NGSS
Performance Expectation: Support an argument that the gravitational force exerted by Earth on objects is directed down.
Science Lesson : Energy from the Sun
State: HI
Standards: NGSS
Performance Expectation:

Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

State: HI
Standards: NGSS
Performance Expectation:

Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

Science Lesson : Food Webs
State: HI
Standards: NGSS
Performance Expectation:

Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

State: HI
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Science Lesson : Who Scientists Are
State: HI
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Science Lesson : Windy Weather
State: HI
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool

Science Lesson : Controlling Erosion
State: HI
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

State: HI
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

State: HI
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

State: HI
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Science Lesson : Engineering Boats
State: HI
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

State: HI
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Science Lesson : Engineering Dams
State: HI
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

State: HI
Standards: NGSS
Performance Expectation: Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Science Lesson : Engineering Dams
State: HI
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Science Lesson : Who Scientists Are
State: HI
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Science Lesson : Windy Weather
State: HI
Standards: NGSS
Performance Expectation:

 Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem

Science Lesson : Controlling Erosion
State: HI
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

State: HI
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

State: HI
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

State: HI
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

State: HI
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Science Lesson : Engineering Boats
State: HI
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

State: HI
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

State: HI
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Science Lesson : Controlling Erosion
State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Science Lesson : Engineering Dams
State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Science Lesson : Who Scientists Are
State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Science Lesson : Engineering Boats
State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

State: HI
Standards: NGSS
Performance Expectation: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.
Science Lesson : Weather Patterns
State: HI
Standards: NGSS
Performance Expectation:

Use and share observations of local weather conditions to describe patterns over time.

Science Lesson : Who Scientists Are
State: HI
Standards: NGSS
Performance Expectation:

Use and share observations of local weather conditions to describe patterns over time.

Science Lesson : Windy Weather
State: HI
Standards: NGSS
Performance Expectation:

Use and share observations of local weather conditions to describe patterns over time

Science Lesson : Heat and Water
State: HI
Standards: NGSS
Performance Expectation:

Use and share observations of local weather conditions to describe patterns over time.

Science Lesson : The Water Cycle
State: HI
Standards: NGSS
Performance Expectation:

Use and share observations of local weather conditions to describe patterns over time.

Science Lesson : Weather and Seasons
State: HI
Standards: NGSS
Performance Expectation:

Use and share observations of local weather conditions to describe patterns over time.

Science Lesson : Growing Plants
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs.

Science Lesson : Animal Habitats
State: HI
Standards: NGSS
Performance Expectation:

Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live

State: HI
Standards: NGSS
Performance Expectation:

Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live

Science Lesson : Extreme Weather
State: HI
Standards: NGSS
Performance Expectation:

Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.

Science Lesson : Windy Weather
State: HI
Standards: NGSS
Performance Expectation:

Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.

Science Lesson : Who Scientists Are
State: HI
Standards: NGSS
Performance Expectation:

Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.

State: HI
Standards: NGSS
Performance Expectation:

Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.

Science Lesson : Human Shelter
State: HI
Standards: NGSS
Performance Expectation:

Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.

Science Lesson : Parts of Plants
State: HI
Standards: NGSS
Performance Expectation:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Science Lesson : Germinating Seeds
State: HI
Standards: NGSS
Performance Expectation:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

State: HI
Standards: NGSS
Performance Expectation:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

State: HI
Standards: NGSS
Performance Expectation:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Science Lesson : Growing Plants
State: HI
Standards: NGSS
Performance Expectation:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Science Lesson : Animal Habitats
State: HI
Standards: NGSS
Performance Expectation:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

State: HI
Standards: NGSS
Performance Expectation:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Science Lesson : Pushes and Pulls
State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

Science Lesson : Forces and Motion
State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

Science Lesson : Friction and Motion
State: HI
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

State: HI
Standards: NGSS
Performance Expectation:

Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.

Science Lesson : Weather Patterns
State: HI
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface.

Science Lesson : Weather and Seasons
State: HI
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface.

Science Lesson : Who Scientists Are
State: HI
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface

Science Lesson : The Water Cycle
State: HI
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface

State: HI
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface

Science Lesson : Sun and Shade
State: HI
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface

Science Lesson : Color and Temperature
State: HI
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface

State: HI
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface

Science Lesson : Who Scientists Are
State: HI
Standards: NGSS
Performance Expectation:

Use tools and materials provided to design and build a structure that will reduce the warming effect of sunlight on Earth’s surface.

State: HI
Standards: NGSS
Performance Expectation:

Use tools and materials provided to design and build a structure that will reduce the warming effect of sunlight on Earth’s surface.

Science Lesson : Earth-Sun-Moon System
State: HI
Standards: NGSS
Performance Expectation: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.
Science Lesson : Sun-Earth-Moon System
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model of the Earth-Sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons

State: HI
Standards: NGSS
Performance Expectation: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. 
Science Lesson : Climate Analysis
State: HI
Standards: NGSS
Performance Expectation: Develop and use a model of the Earth-Sun-moon system to explain the cyclical patterns of lunar phases, eclipses of the sun and moon, and seasons.
Science Lesson : Sun-Earth-Moon System
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.

State: HI
Standards: NGSS
Performance Expectation: Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.
State: HI
Standards: NGSS
Performance Expectation:  Analyze and interpret data to determine scale properties of objects in the solar system.
Science Lesson : Animal Diversity
State: HI
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.

State: HI
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.

Science Lesson : Climate Analysis
State: HI
Standards: NGSS
Performance Expectation: Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history.
State: HI
Standards: NGSS
Performance Expectation: Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history.
Science Lesson : The Rock Cycle
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Science Lesson : Mass and Heat Transfer
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Science Lesson : Earth Materials
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Science Lesson : Glacier Motion
State: HI
Standards: NGSS
Performance Expectation:

Use a model to illustrate that energy from Earth’s interior drives convection that cycles Earth’s crust, leading to melting, crystallization, weathering, and deformation of large rock formations, including generation of ocean seafloor at ridges, submergence of ocean seafloor at trenches, mountain building, and active volcanic chains.

Science Lesson : Groundwater Flow
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Science Lesson : The Rock Cycle
State: HI
Standards: NGSS
Performance Expectation:

Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Science Lesson : Groundwater Flow
State: HI
Standards: NGSS
Performance Expectation:

Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales.

Science Lesson : Weathering and Erosion
State: HI
Standards: NGSS
Performance Expectation:

 Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Science Lesson : Earth Materials
State: HI
Standards: NGSS
Performance Expectation:

Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Science Lesson : Glacier Motion
State: HI
Standards: NGSS
Performance Expectation: Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales.
Science Lesson : Climate Analysis
State: HI
Standards: NGSS
Performance Expectation:  Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales.
Science Lesson : Earth Materials
State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

State: HI
Standards: NGSS
Performance Expectation: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

State: HI
Standards: NGSS
Performance Expectation: Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.
Science Lesson : Convection and Weather
State: HI
Standards: NGSS
Performance Expectation:

Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions.

Science Lesson : Groundwater Flow
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.

Science Lesson : Weathering and Erosion
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

Science Lesson : Climate Analysis
State: HI
Standards: NGSS
Performance Expectation: Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.
Science Lesson : Glacier Motion
State: HI
Standards: NGSS
Performance Expectation: Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.

State: HI
Standards: NGSS
Performance Expectation:

 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

State: HI
Standards: NGSS
Performance Expectation:

 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Science Lesson : Earth’s Climate
State: HI
Standards: NGSS
Performance Expectation:

 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

State: HI
Standards: NGSS
Performance Expectation: Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.
Science Lesson : Convection and Weather
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Science Lesson : Natural Resources
State: HI
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.

State: HI
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.

Science Lesson : Groundwater Flow
State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

State: HI
Standards: NGSS
Performance Expectation:

 Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

State: HI
Standards: NGSS
Performance Expectation:

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

State: HI
Standards: NGSS
Performance Expectation:

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

Science Lesson : Greenhouse Effect
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.

State: HI
Standards: NGSS
Performance Expectation:

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.

State: HI
Standards: NGSS
Performance Expectation:

Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

Science Lesson : Greenhouse Effect
State: HI
Standards: NGSS
Performance Expectation:

Ask questions to clarify evidence of the factors that have caused the rise of global temperatures over the past.

Science Lesson : Climate Analysis
State: HI
Standards: NGSS
Performance Expectation: Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
Science Lesson : Engineering Seismograph
State: HI
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: HI
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: HI
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: HI
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: HI
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Science Lesson : Engineering Vehicles
State: HI
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Science Lesson : Engineering Speakers
State: HI
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: HI
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: HI
Standards: NGSS
Performance Expectation: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Science Lesson : Engineering Greenhouses
State: HI
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: HI
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: HI
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Science Lesson : Engineering Bridges
State: HI
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Science Lesson : Engineering Speakers
State: HI
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Science Lesson : Engineering Greenhouses
State: HI
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Science Lesson : Engineering Vehicles
State: HI
Standards: NGSS
Performance Expectation:

 Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Science Lesson : Engineering Seismograph
State: HI
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation: Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
State: HI
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Science Lesson : Engineering Bridges
State: HI
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

State: HI
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Science Lesson : Engineering Seismograph
State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Science Lesson : Engineering Vehicles
State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Science Lesson : Engineering Speakers
State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: HI
Standards: NGSS
Performance Expectation: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Science Lesson : Engineering Greenhouses
State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Science Lesson : Engineering Bridges
State: HI
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Science Lesson : Engineering Vehicles
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Science Lesson : Engineering Speakers
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Science Lesson : Engineering Bridges
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

State: HI
Standards: NGSS
Performance Expectation: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Science Lesson : Engineering Seismograph
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Science Lesson : Engineering Greenhouses
State: HI
Standards: NGSS
Performance Expectation:

 Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Science Lesson : Sucrose and Heart Rate
State: HI
Standards: NGSS
Performance Expectation:  Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
State: HI
Standards: NGSS
Performance Expectation:

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Science Lesson : Comparing Cells
State: HI
Standards: NGSS
Performance Expectation: Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
State: HI
Standards: NGSS
Performance Expectation:

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

State: HI
Standards: NGSS
Performance Expectation:

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Science Lesson : Cellular Respiration
State: HI
Standards: NGSS
Performance Expectation: Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells
State: HI
Standards: NGSS
Performance Expectation:

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

State: HI
Standards: NGSS
Performance Expectation:

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

State: HI
Standards: NGSS
Performance Expectation:

 Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Science Lesson : The Cell Membrane
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Science Lesson : Photosynthesis
State: HI
Standards: NGSS
Performance Expectation:

 Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Science Lesson : Comparing Cells
State: HI
Standards: NGSS
Performance Expectation: Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.
State: HI
Standards: NGSS
Performance Expectation:

 Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

Science Lesson : Sucrose and Heart Rate
State: HI
Standards: NGSS
Performance Expectation: Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.
State: HI
Standards: NGSS
Performance Expectation:

 Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

State: HI
Standards: NGSS
Performance Expectation:

Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

Science Lesson : Natural Selection
State: HI
Standards: NGSS
Performance Expectation:

Use arguments based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

State: HI
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

State: HI
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Science Lesson : Reproduction
State: HI
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Science Lesson : Rocky Shore Ecosystems
State: HI
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Science Lesson : Sea Star Structures
State: HI
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

State: HI
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Science Lesson : Forest Food Web
State: HI
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

State: HI
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. 

Science Lesson : The Cell Membrane
State: HI
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. 

Science Lesson : Natural Selection
State: HI
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. 

Science Lesson :
State: HI
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Science Lesson : Photosynthesis
State: HI
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Science Lesson : DNA and Proteins
State: HI
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. 

Science Lesson : Life on Earth
State: HI
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

State: HI
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Science Lesson : Photosynthesis
State: HI
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms

Science Lesson : Comparing Cells
State: HI
Standards: NGSS
Performance Expectation:  Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.
Science Lesson : Food and Energy
State: HI
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Science Lesson : Rocky Shore Ecosystems
State: HI
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Science Lesson : Cellular Respiration
State: HI
Standards: NGSS
Performance Expectation: Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.
Science Lesson : Food and Energy
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.

Science Lesson : Sucrose and Heart Rate
State: HI
Standards: NGSS
Performance Expectation:

Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.

State: HI
Standards: NGSS
Performance Expectation:

Gather and synthesize information that sensory receptors respond to stimul

Science Lesson : Food Webs
State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Science Lesson :
State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Science Lesson : Rocky Shore Ecosystems
State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Science Lesson : Food Webs
State: HI
Standards: NGSS
Performance Expectation:

Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Science Lesson : Rocky Shore Ecosystems
State: HI
Standards: NGSS
Performance Expectation:

Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Science Lesson : Forest Food Web
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Science Lesson : Food Webs
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Science Lesson : Rocky Shore Ecosystems
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Science Lesson :
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Science Lesson : Food Webs
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Science Lesson : Rocky Shore Ecosystems
State: HI
Standards: NGSS
Performance Expectation:

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

State: HI
Standards: NGSS
Performance Expectation:

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

State: HI
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

State: HI
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

Science Lesson : Natural Selection
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Science Lesson : DNA and Mutations
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Science Lesson : Animal Diversity
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Science Lesson : Heredity and Traits
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Science Lesson : Heredity and Traits
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Science Lesson : Animal Diversity
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Science Lesson : Reproduction
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Science Lesson : Reproduction
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to show why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Science Lesson : Life on Earth
State: HI
Standards: NGSS
Performance Expectation:

 Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

Science Lesson : Animal Diversity
State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

Science Lesson : Comparing Cells
State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

State: HI
Standards: NGSS
Performance Expectation: Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.
Science Lesson : Animal Diversity
State: HI
Standards: NGSS
Performance Expectation:

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Science Lesson : Comparing Cells
State: HI
Standards: NGSS
Performance Expectation:

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Science Lesson : Life on Earth
State: HI
Standards: NGSS
Performance Expectation:

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Science Lesson : Animal Diversity
State: HI
Standards: NGSS
Performance Expectation:

Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

Science Lesson : DNA and Mutations
State: HI
Standards: NGSS
Performance Expectation:

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

Science Lesson : Life on Earth
State: HI
Standards: NGSS
Performance Expectation:

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

Science Lesson : Natural Selection
State: HI
Standards: NGSS
Performance Expectation:

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

Science Lesson : Natural Selection
State: HI
Standards: NGSS
Performance Expectation:

Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.

Science Lesson : Heredity and Traits
State: HI
Standards: NGSS
Performance Expectation:

Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.

Science Lesson : Natural Selection
State: HI
Standards: NGSS
Performance Expectation:

Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

Science Lesson : The Rock Cycle
State: HI
Standards: NGSS
Performance Expectation:

Develop models to describe the atomic composition of simple molecules and extended structures.

Science Lesson : Atoms
State: HI
Standards: NGSS
Performance Expectation:

Develop models to describe the atomic composition of simple molecules and extended structures

Science Lesson : Molecules
State: HI
Standards: NGSS
Performance Expectation:

Develop models to describe the atomic composition of simple molecules and extended structures

State: HI
Standards: NGSS
Performance Expectation:

Develop models to describe the atomic composition of simple molecules and extended structures.

Science Lesson : Natural Resources
State: HI
Standards: NGSS
Performance Expectation:

Develop models to describe the atomic composition of simple molecules and extended structures.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation: Develop models to describe the atomic composition of simple molecules and extended structures.
State: HI
Standards: NGSS
Performance Expectation: Develop models to describe the atomic composition of simple molecules and extended structures.
State: HI
Standards: NGSS
Performance Expectation:

Develop models to describe the atomic composition of simple molecules and extended structures.

Science Lesson : Renewable Energy
State: HI
Standards: NGSS
Performance Expectation:  Develop models to describe the atomic composition of simple molecules and extended structures.
Science Lesson : Molecules
State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Science Lesson : Renewable Energy
State: HI
Standards: NGSS
Performance Expectation: Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.
State: HI
Standards: NGSS
Performance Expectation:

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

State: HI
Standards: NGSS
Performance Expectation: Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.
Science Lesson : Natural Resources
State: HI
Standards: NGSS
Performance Expectation:

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation:

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Science Lesson : Mass and Motion
State: HI
Standards: NGSS
Performance Expectation:

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

State: HI
Standards: NGSS
Performance Expectation:

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. 
Science Lesson : Molecules
State: HI
Standards: NGSS
Performance Expectation:

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Science Lesson : Mass and Heat Transfer
State: HI
Standards: NGSS
Performance Expectation:

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Science Lesson : Molecules
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Science Lesson : The Rock Cycle
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Science Lesson : Renewable Energy
State: HI
Standards: NGSS
Performance Expectation:  Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.
State: HI
Standards: NGSS
Performance Expectation:

Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation:

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Science Lesson : Mass and Motion
State: HI
Standards: NGSS
Performance Expectation:

Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.

State: HI
Standards: NGSS
Performance Expectation: Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.
State: HI
Standards: NGSS
Performance Expectation: Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
Science Lesson : Forces and Motion
State: HI
Standards: NGSS
Performance Expectation:

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

Science Lesson : Engineering Vehicles
State: HI
Standards: NGSS
Performance Expectation:

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

Science Lesson : Engineering Seismograph
State: HI
Standards: NGSS
Performance Expectation:

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

State: HI
Standards: NGSS
Performance Expectation:

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. 

Science Lesson : Mass and Motion
State: HI
Standards: NGSS
Performance Expectation:

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

State: HI
Standards: NGSS
Performance Expectation:

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Science Lesson : Magnetism and Energy
State: HI
Standards: NGSS
Performance Expectation:

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Science Lesson : Engineering Speakers
State: HI
Standards: NGSS
Performance Expectation:

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Science Lesson : Sun-Earth-Moon System
State: HI
Standards: NGSS
Performance Expectation:

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Science Lesson : Sea Star Structures
State: HI
Standards: NGSS
Performance Expectation:

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

State: HI
Standards: NGSS
Performance Expectation: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
Science Lesson : Energy Transformation
State: HI
Standards: NGSS
Performance Expectation:

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Science Lesson : Earth-Sun-Moon System
State: HI
Standards: NGSS
Performance Expectation: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
State: HI
Standards: NGSS
Performance Expectation: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
Science Lesson : Glacier Motion
State: HI
Standards: NGSS
Performance Expectation:

Use evidence to support the claim that gravitational forces between objects are attractive and are only noticeable when one or both of the objects have a very large mass.

Science Lesson : Magnetism and Energy
State: HI
Standards: NGSS
Performance Expectation:

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Science Lesson : Engineering Speakers
State: HI
Standards: NGSS
Performance Expectation:

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

State: HI
Standards: NGSS
Performance Expectation:

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

State: HI
Standards: NGSS
Performance Expectation:

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. 

State: HI
Standards: NGSS
Performance Expectation:

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

Science Lesson : Mass and Motion
State: HI
Standards: NGSS
Performance Expectation:

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

Science Lesson : Engineering Speakers
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Science Lesson : Magnetism and Energy
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Science Lesson : Energy Transformation
State: HI
Standards: NGSS
Performance Expectation:

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation:

 Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. 

State: HI
Standards: NGSS
Performance Expectation:

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Science Lesson : Mass and Heat Transfer
State: HI
Standards: NGSS
Performance Expectation:

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Science Lesson : Engineering Greenhouses
State: HI
Standards: NGSS
Performance Expectation:

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation:

 Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

State: HI
Standards: NGSS
Performance Expectation:

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

State: HI
Standards: NGSS
Performance Expectation:

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Science Lesson : Mass and Heat Transfer
State: HI
Standards: NGSS
Performance Expectation:

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation:

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. *In this unit, students focus on the relationship between the energy transferred and the change in the average kinetic energy of the substance’s particles. They will incorporate the other aspects of the standard in later units.

State: HI
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

State: HI
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Magnetism and Energy
State: HI
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

State: HI
Standards: NGSS
Performance Expectation:

 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation:

 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

State: HI
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

State: HI
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Forces and Motion
State: HI
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Engineering Vehicles
State: HI
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

State: HI
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation: Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
State: HI
Standards: NGSS
Performance Expectation: Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
State: HI
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Mass and Motion
State: HI
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Energy Transformation
State: HI
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Mass and Heat Transfer
State: HI
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Chemical Reactions
State: HI
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

State: HI
Standards: NGSS
Performance Expectation:

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

Science Lesson : Engineering Seismograph
State: HI
Standards: NGSS
Performance Expectation:

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

State: HI
Standards: NGSS
Performance Expectation:

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

State: HI
Standards: NGSS
Performance Expectation:

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

State: HI
Standards: NGSS
Performance Expectation:

Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

State: HI
Standards: NGSS
Performance Expectation:

 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

State: HI
Standards: NGSS
Performance Expectation:

 Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

Science Lesson : Communication Systems
State: HI
Standards: NGSS
Performance Expectation:

Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

State: HI
Standards: NGSS
Performance Expectation:

Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

This alignment guide shows how KnowAtom’s integrated model of science curriculum is designed for the Hawaii Science Standards(Next Generation Science Standards).

free anchor chart-knowatom

Learn How to Get Started Using KnowAtom in Your School

Other State Standards

Standards citation: NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. Neither WestEd nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product, and do not endorse it.