This alignment guide shows how KnowAtom’s integrated model of science curriculum for Grades K-8 is designed for the California K-12 Science Standards Next Generation Science Standards for California Public Schools.
Science Lesson | State | Standards | State ID | Grades | Performance Expectation |
---|---|---|---|---|---|
Earth and Moon Patterns | CA | Next Generation Science Standards for California Public Schools | 1-ESS1-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Use observations of the sun, moon, and stars to describe patterns that can be predicted. |
Sun Position and Shadow Patterns | CA | Next Generation Science Standards for California Public Schools | 1-ESS1-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Use observations of the sun, moon, and stars to describe patterns that can be predicted. |
Seasonal Patterns | CA | Next Generation Science Standards for California Public Schools | 1-ESS1-2 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Make observations at different times of year to relate the amount of daylight to the time of year. |
Seasonal Temperatures and Water Cycles | CA | Next Generation Science Standards for California Public Schools | 1-ESS1-2 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Make observations at different times of year to relate the amount of daylight to the time of year. |
Engineering Litter Collectors | CA | Next Generation Science Standards for California Public Schools | 1-LS1-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs. |
Insect Anatomy - Structure and Function | CA | Next Generation Science Standards for California Public Schools | 1-LS1-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs. |
Plant Structures | CA | Next Generation Science Standards for California Public Schools | 1-LS1-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs. |
Ant Behavior and Food | CA | Next Generation Science Standards for California Public Schools | 1-LS1-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs. |
Bird Beak Structure and Function | CA | Next Generation Science Standards for California Public Schools | 1-LS1-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs. |
Engineering Dams | CA | Next Generation Science Standards for California Public Schools | 1-LS1-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs. |
Living and Nonliving Things | CA | Next Generation Science Standards for California Public Schools | 1-LS1-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs. |
Parent and Offspring Behaviors | CA | Next Generation Science Standards for California Public Schools | 1-LS1-2 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive. |
Plant Structures | CA | Next Generation Science Standards for California Public Schools | 1-LS3-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents. |
Living and Nonliving Things | CA | Next Generation Science Standards for California Public Schools | 1-LS3-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents. |
Parent and Offspring Behaviors | CA | Next Generation Science Standards for California Public Schools | 1-LS3-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents. *Students focus on animals in this unit. |
Sounds and Senses | CA | Next Generation Science Standards for California Public Schools | 1-PS4-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 | Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate. |
Engineering Communication Devices | CA | Next Generation Science Standards for California Public Schools | 1-PS4-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 | Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance. |
Making Sounds and Instruments | CA | Next Generation Science Standards for California Public Schools | 1-PS4-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate. |
Light | CA | Next Generation Science Standards for California Public Schools | 1-PS4-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Make observations to construct an evidence-based account that objects in darkness can be seen only when illuminated. |
Materials and Light | CA | Next Generation Science Standards for California Public Schools | 1-PS4-3 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Plan and conduct investigations to determine the effect of placing objects made with different materials in the path of a beam of light. |
Earth Events | CA | Next Generation Science Standards for California Public Schools | 2-ESS1-1 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Use information from several sources to provide evidence that Earth events can occur quickly or slowly. |
Controlling Erosion | CA | Next Generation Science Standards for California Public Schools | 2-ESS2-1 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land. |
Mapping Land and Water | CA | Next Generation Science Standards for California Public Schools | 2-ESS2-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Develop a model to represent the shapes and kinds of land and bodies of water in an area. |
Water Flow | CA | Next Generation Science Standards for California Public Schools | 2-ESS2-3 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. |
How Plants Grow | CA | Next Generation Science Standards for California Public Schools | 2-LS2-1 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Plan and conduct an investigation to determine if plants need sunlight and water to grow. |
Flowers | CA | Next Generation Science Standards for California Public Schools | 2-LS2-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants. |
Butterfly Life Cycle | CA | Next Generation Science Standards for California Public Schools | 2-LS2-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants. |
Butterfly Structure and Function | CA | Next Generation Science Standards for California Public Schools | 2-LS2-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants. |
Engineering Hand Pollinators | CA | Next Generation Science Standards for California Public Schools | 2-LS2-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants. |
Habitats | CA | Next Generation Science Standards for California Public Schools | 2-LS4-1 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Make observations of plants and animals to compare the diversity of life in different habitats. |
Predator-Prey Relationships | CA | Next Generation Science Standards for California Public Schools | 2-LS4-1 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Make observations of plants and animals to compare the diversity of life in different habitats. |
Matter and Properties | CA | Next Generation Science Standards for California Public Schools | 2-PS1-1 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. |
Engineering Owl Shelters | CA | Next Generation Science Standards for California Public Schools | 2-PS1-1 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. |
Property of Materials | CA | Next Generation Science Standards for California Public Schools | 2-PS1-1 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. |
Floating and Sinking | CA | Next Generation Science Standards for California Public Schools | 2-PS1-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose. |
Engineering Boats | CA | Next Generation Science Standards for California Public Schools | 2-PS1-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose. |
Property of Materials | CA | Next Generation Science Standards for California Public Schools | 2-PS1-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose. |
Engineering Owl Shelters | CA | Next Generation Science Standards for California Public Schools | 2-PS1-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose. |
Action-Reaction Forces | CA | Next Generation Science Standards for California Public Schools | 2-PS1-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose. |
Friction | CA | Next Generation Science Standards for California Public Schools | 2-PS1-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose. |
Engineering Owl Shelters | CA | Next Generation Science Standards for California Public Schools | 2-PS1-3 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object. |
Matter and Properties | CA | Next Generation Science Standards for California Public Schools | 2-PS1-4 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. |
Water Flow | CA | Next Generation Science Standards for California Public Schools | 2-PS1-4 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Obtain information to identify where water is found on Earth and that it can be solid or liquid. |
Engineering Library Scopes | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. |
Flood Control Engineering | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Define a simple design problem reflecting a need or want that includes specified criteria for success and constraints on materials, time, or cost. |
Engineering Skyscrapers | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. |
Engineering Electric Cars | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. |
Engineering Information Transfer | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. |
Engineering Roller Coasters | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. |
Engineering Sound Barriers | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. |
Engineering Launchers | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. |
Engineering Hearing Toys | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. |
Engineering Pick-and-Place Devices | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. |
Engineering Water Prisms | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. |
Engineering Filtration Devices | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. |
Engineering Permeable Concrete | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. |
Flood Control Engineering | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Generate and compare multiple possible solutions to a problem, based on how well each is likely to meet the criteria and constraints of the problem. |
Engineering Electric Cars | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. |
Engineering Information Transfer | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. |
Engineering Roller Coasters | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. |
Engineering Sound Barriers | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. |
Engineering Library Scopes | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. |
Engineering Launchers | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. |
Engineering Skyscrapers | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. |
Engineering Hearing Toys | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. |
Engineering Water Prisms | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. |
Engineering Pick-and-Place Devices | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. |
Engineering Filtration Devices | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. |
Engineering Permeable Concrete | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. |
Engineering Water Prisms | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. |
Engineering Permeable Concrete | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-3 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. |
Engineering Library Scopes | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-3 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. |
Flood Control Engineering | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. |
Engineering Electric Cars | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-3 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. |
Engineering Information Transfer | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-3 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. |
Engineering Roller Coasters | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-3 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. |
Engineering Sound Barriers | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-3 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. |
Engineering Launchers | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-3 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. |
Engineering Skyscrapers | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. |
Engineering Pick-and-Place Devices | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. |
Engineering Hearing Toys | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. |
Engineering Filtration Devices | CA | Next Generation Science Standards for California Public Schools | 3-5-ETS1-3 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. |
Earth Materials and Water Flow | CA | Next Generation Science Standards for California Public Schools | 3-ESS2-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. |
Weather and Climate | CA | Next Generation Science Standards for California Public Schools | 3-ESS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. |
Earth's Interacting Systems | CA | Next Generation Science Standards for California Public Schools | 3-ESS2-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. |
Weather and Climate | CA | Next Generation Science Standards for California Public Schools | 3-ESS2-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Obtain and combine information to describe climates in different regions of the world. |
Energy from the Sun | CA | Next Generation Science Standards for California Public Schools | 3-ESS2-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Obtain and combine information to describe climates in different regions of the world. |
Heat and Evaporation | CA | Next Generation Science Standards for California Public Schools | 3-ESS2-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Obtain and combine information to describe climates in different regions of the world. |
Earth's Interacting Systems | CA | Next Generation Science Standards for California Public Schools | 3-ESS2-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Obtain and combine information to describe climates in different regions of the world. |
Flood Control Engineering | CA | Next Generation Science Standards for California Public Schools | 3-ESS3-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard. |
Engineering Permeable Concrete | CA | Next Generation Science Standards for California Public Schools | 3-ESS3-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard. |
Earth Materials and Water Flow | CA | Next Generation Science Standards for California Public Schools | 3-ESS3-3 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Obtain and combine information to describe climates in different regions of the world. |
Life Cycles | CA | Next Generation Science Standards for California Public Schools | 3-LS1-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death. |
Frog Life Cycle | CA | Next Generation Science Standards for California Public Schools | 3-LS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death. |
Plant Growth and Acid Rain | CA | Next Generation Science Standards for California Public Schools | 3-LS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death. |
Environmental Change | CA | Next Generation Science Standards for California Public Schools | 3-LS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Construct an argument that some animals form groups that help members survive. |
Life Cycles | CA | Next Generation Science Standards for California Public Schools | 3-LS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Construct an argument that some animals form groups that help members survive. |
Heredity and Traits | CA | Next Generation Science Standards for California Public Schools | 3-LS3-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. |
Selecting Traits | CA | Next Generation Science Standards for California Public Schools | 3-LS3-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. |
Ecosystem Dynamics | CA | Next Generation Science Standards for California Public Schools | 3-LS3-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. |
Heredity and Traits | CA | Next Generation Science Standards for California Public Schools | 3-LS3-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Use evidence to support the explanation that traits can be influenced by the environment. |
Ecosystem Dynamics | CA | Next Generation Science Standards for California Public Schools | 3-LS3-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Use evidence to support the explanation that traits can be influenced by the environment. |
Selecting Traits | CA | Next Generation Science Standards for California Public Schools | 3-LS3-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Use evidence to support the explanation that traits can be influenced by the environment. |
Fossil Organisms and their Environment | CA | Next Generation Science Standards for California Public Schools | 3-LS4-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago. |
Changing Earth's Surface | CA | Next Generation Science Standards for California Public Schools | 3-LS4-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago. |
Selecting Traits | CA | Next Generation Science Standards for California Public Schools | 3-LS4-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. |
Heredity and Traits | CA | Next Generation Science Standards for California Public Schools | 3-LS4-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. |
Ecosystem Dynamics | CA | Next Generation Science Standards for California Public Schools | 3-LS4-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. |
Fossil Organisms and their Environment | CA | Next Generation Science Standards for California Public Schools | 3-LS4-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. |
Ecosystem Dynamics | CA | Next Generation Science Standards for California Public Schools | 3-LS4-3 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. |
Selecting Traits | CA | Next Generation Science Standards for California Public Schools | 3-LS4-3 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. |
Energy from the Sun | CA | Next Generation Science Standards for California Public Schools | 3-LS4-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. |
Environmental Change | CA | Next Generation Science Standards for California Public Schools | 3-LS4-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. |
Environmental Change | CA | Next Generation Science Standards for California Public Schools | 3-LS4-4 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Make a claim about the merit of a solution to a problem caused when the environment changes and the type of plants and animals that live there may change. |
Selecting Traits | CA | Next Generation Science Standards for California Public Schools | 3-LS4-4 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make a claim about the merit of a solution to a problem caused when the environment changes and the type of plants and animals that live there may change. |
Energy Transfer and Levers | CA | Next Generation Science Standards for California Public Schools | 3-PS2-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. |
Forces and Levers | CA | Next Generation Science Standards for California Public Schools | 3-PS2-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 | Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. |
Comparing Forces | CA | Next Generation Science Standards for California Public Schools | 3-PS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. |
Windmill Forces | CA | Next Generation Science Standards for California Public Schools | 3-PS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. |
Patterns in Motion | CA | Next Generation Science Standards for California Public Schools | 3-PS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion. |
Forces and Materials | CA | Next Generation Science Standards for California Public Schools | 3-PS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. |
Engineering Skyscrapers | CA | Next Generation Science Standards for California Public Schools | 3-PS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. |
Engineering Launchers | CA | Next Generation Science Standards for California Public Schools | 3-PS2-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. |
Balanced vs. Unbalanced Forces | CA | Next Generation Science Standards for California Public Schools | 3-PS2-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. |
Energy and Collisions | CA | Next Generation Science Standards for California Public Schools | 3-PS2-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. |
Motion in the Solar System | CA | Next Generation Science Standards for California Public Schools | 3-PS2-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion. |
Current Electricity | CA | Next Generation Science Standards for California Public Schools | 3-PS2-3 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. |
Magnets and Motors | CA | Next Generation Science Standards for California Public Schools | 3-PS2-3 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. |
Static Charge | CA | Next Generation Science Standards for California Public Schools | 3-PS2-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. |
Magnets and Magnetic Fields | CA | Next Generation Science Standards for California Public Schools | 3-PS2-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. |
Engineering Pick-and-Place Devices | CA | Next Generation Science Standards for California Public Schools | 3-PS2-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. |
Engineering Pick-and-Place Devices | CA | Next Generation Science Standards for California Public Schools | 3-PS2-4 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Define a simple design problem that can be solved by applying scientific ideas about magnets. |
Plate Tectonics and Landform Patterns | CA | Next Generation Science Standards for California Public Schools | 4-ESS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. |
Water Erosion | CA | Next Generation Science Standards for California Public Schools | 4-ESS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. |
Changing Earth's Surface | CA | Next Generation Science Standards for California Public Schools | 4-ESS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. |
Weathering Rocks | CA | Next Generation Science Standards for California Public Schools | 4-ESS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. *In this unit, students focus on the role of weathering in erosion, deposition, and Earth’s changing landscape. |
Flood Control Engineering | CA | Next Generation Science Standards for California Public Schools | 4-ESS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. |
Water Erosion | CA | Next Generation Science Standards for California Public Schools | 4-ESS2-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. |
Weathering Rocks | CA | Next Generation Science Standards for California Public Schools | 4-ESS2-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. |
Plate Tectonics and Landform Patterns | CA | Next Generation Science Standards for California Public Schools | 4-ESS2-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Analyze and interpret data from maps to describe patterns of Earth’s features. |
Earth's Surface Features | CA | Next Generation Science Standards for California Public Schools | 4-ESS2-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Analyze and interpret data from maps to describe patterns of Earth’s features. how different kinds of rock are mechanically weathered, analyzing how the sediment caused by the weathering can then be eroded. *In this unit, students focus on patterns in the locations of volcanoes and earthquakes. |
Hydroelectric Dams and the Environment | CA | Next Generation Science Standards for California Public Schools | 4-ESS3-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment. |
Water Erosion | CA | Next Generation Science Standards for California Public Schools | 4-ESS3-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment. |
Changing Earth's Surface | CA | Next Generation Science Standards for California Public Schools | 4-ESS3-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment. |
Flood Control Engineering | CA | Next Generation Science Standards for California Public Schools | 4-ESS3-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans. |
Engineering Permeable Concrete | CA | Next Generation Science Standards for California Public Schools | 4-ESS3-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans. |
Heredity and Traits | CA | Next Generation Science Standards for California Public Schools | 4-LS1-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction. |
Plant Growth and Acid Rain | CA | Next Generation Science Standards for California Public Schools | 4-LS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction. |
Energy from the Sun | CA | Next Generation Science Standards for California Public Schools | 4-LS1-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction. |
Plant Structures | CA | Next Generation Science Standards for California Public Schools | 4-LS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction. |
Frog Life Cycle | CA | Next Generation Science Standards for California Public Schools | 4-LS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction. |
Mealworm Senses | CA | Next Generation Science Standards for California Public Schools | 4-LS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction. |
Selecting Traits | CA | Next Generation Science Standards for California Public Schools | 4-LS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction. |
Plant and Animal Cells | CA | Next Generation Science Standards for California Public Schools | 4-LS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction. |
Plant Growth | CA | Next Generation Science Standards for California Public Schools | 4-LS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction. |
Mealworm Senses | CA | Next Generation Science Standards for California Public Schools | 4-LS1-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways. |
Patterns in Motion | CA | Next Generation Science Standards for California Public Schools | 4-PS3-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Use evidence to construct an explanation relating the speed of an object to the energy of that object. *Students are introduced to the relationship between energy and speed in this unit. |
Energy and Collisions | CA | Next Generation Science Standards for California Public Schools | 4-PS3-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. *In this unit, students are introduced to the concept of patterns caused by the relative motions of the sun, moon, and Earth. |
Energy Transfer and Levers | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Engineering Launchers | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Current Electricity | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Engineering Electric Cars | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Windmill Forces | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.*Students are introduced to energy transfer in this unit by focusing on moving substances. They will explore other forms of energy transfer in later units. |
Waves and Energy | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Pitch and Volume | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Engineering Information Transfer | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Forces and Levers | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Friction and Motion | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Engineering Roller Coasters | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Electrical Currents and Circuits | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Magnets and Motors | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Sound Energy | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Sound Energy and Materials | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Engineering Sound Barriers | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Engineering Library Scopes | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Engineering Water Prisms | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Sound Energy and Mediums | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Engineering Hearing Toys | CA | Next Generation Science Standards for California Public Schools | 4-PS3-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. |
Energy and Collisions | CA | Next Generation Science Standards for California Public Schools | 4-PS3-3 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Ask questions and predict outcomes about the changes in energy that occur when objects collide. |
Engineering Electric Cars | CA | Next Generation Science Standards for California Public Schools | 4-PS3-4 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. |
Engineering Information Transfer | CA | Next Generation Science Standards for California Public Schools | 4-PS3-4 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. |
Engineering Roller Coasters | CA | Next Generation Science Standards for California Public Schools | 4-PS3-4 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. |
Electrical Currents and Circuits | CA | Next Generation Science Standards for California Public Schools | 4-PS3-4 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. |
Magnets and Motors | CA | Next Generation Science Standards for California Public Schools | 4-PS3-4 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. |
Engineering Launchers | CA | Next Generation Science Standards for California Public Schools | 4-PS3-4 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. |
Waves and Energy | CA | Next Generation Science Standards for California Public Schools | 4-PS4-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. |
Sound Energy | CA | Next Generation Science Standards for California Public Schools | 4-PS4-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. |
Engineering Water Prisms | CA | Next Generation Science Standards for California Public Schools | 4-PS4-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. |
Engineering Information Transfer | CA | Next Generation Science Standards for California Public Schools | 4-PS4-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. |
Engineering Library Scopes | CA | Next Generation Science Standards for California Public Schools | 4-PS4-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. |
Engineering Information Transfer | CA | Next Generation Science Standards for California Public Schools | 4-PS4-3 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Generate and compare multiple solutions that use patterns to transfer information. |
Motion in the Solar System | CA | Next Generation Science Standards for California Public Schools | 5-ESS1-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth. |
Scaling the Sun Earth Moon System | CA | Next Generation Science Standards for California Public Schools | 5-ESS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth. |
Balanced vs. Unbalanced Forces | CA | Next Generation Science Standards for California Public Schools | 5-ESS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth. |
Patterns | CA | Next Generation Science Standards for California Public Schools | 5-ESS1-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. |
Balanced vs. Unbalanced Forces | CA | Next Generation Science Standards for California Public Schools | 5-ESS1-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. *In this unit, students are introduced to the concept of patterns caused by the relative motions of the sun, moon, and Earth. |
Fossil Organisms and their Environment | CA | Next Generation Science Standards for California Public Schools | 5-ESS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. |
Heat and Evaporation | CA | Next Generation Science Standards for California Public Schools | 5-ESS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. |
Energy from the Sun | CA | Next Generation Science Standards for California Public Schools | 5-ESS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. |
Environmental Change | CA | Next Generation Science Standards for California Public Schools | 5-ESS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. |
Weathering Rocks | CA | Next Generation Science Standards for California Public Schools | 5-ESS2-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. |
Earth's Water | CA | Next Generation Science Standards for California Public Schools | 5-ESS2-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. |
Earth's Interacting Systems | CA | Next Generation Science Standards for California Public Schools | 5-ESS2-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. |
Earth Materials and Water Flow | CA | Next Generation Science Standards for California Public Schools | 5-ESS2-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. |
Heat and Evaporation | CA | Next Generation Science Standards for California Public Schools | 5-ESS2-2 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. |
Earth's Water | CA | Next Generation Science Standards for California Public Schools | 5-ESS2-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. |
Earth Materials and Water Flow | CA | Next Generation Science Standards for California Public Schools | 5-ESS2-2 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. |
Engineering Library Scopes | CA | Next Generation Science Standards for California Public Schools | 5-ESS3-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment. |
Hydroelectric Dams and the Environment | CA | Next Generation Science Standards for California Public Schools | 5-ESS3-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment. |
Engineering Filtration Devices | CA | Next Generation Science Standards for California Public Schools | 5-ESS3-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment. |
Plant Growth and Acid Rain | CA | Next Generation Science Standards for California Public Schools | 5-LS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Support an argument that plants get the materials they need for growth chiefly from air and water. |
Energy from the Sun | CA | Next Generation Science Standards for California Public Schools | 5-LS1-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Support an argument that plants get the materials they need for growth chiefly from air and water. |
Food Webs | CA | Next Generation Science Standards for California Public Schools | 5-LS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Support an argument that plants get the materials they need for growth chiefly from air and water. |
Plant Structures | CA | Next Generation Science Standards for California Public Schools | 5-LS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Support an argument that plants get the materials they need for growth chiefly from air and water. |
Plant Growth | CA | Next Generation Science Standards for California Public Schools | 5-LS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Support an argument that plants get the materials they need for growth chiefly from air and water. |
Decomposition | CA | Next Generation Science Standards for California Public Schools | 5-LS2-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. |
Energy from the Sun | CA | Next Generation Science Standards for California Public Schools | 5-LS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. |
Fossil Organisms and their Environment | CA | Next Generation Science Standards for California Public Schools | 5-LS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. |
Energy and Matter in Food Webs | CA | Next Generation Science Standards for California Public Schools | 5-LS2-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. |
Ecosystem Dynamics | CA | Next Generation Science Standards for California Public Schools | 5-LS2-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. |
Sound Energy and Materials | CA | Next Generation Science Standards for California Public Schools | 5-PS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Develop a model to describe that matter is made of particles too small to be seen. |
Engineering Sound Barriers | CA | Next Generation Science Standards for California Public Schools | 5-PS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Develop a model to describe that matter is made of particles too small to be seen. |
Current Electricity | CA | Next Generation Science Standards for California Public Schools | 5-PS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Develop a model to describe that matter is made of particles too small to be seen. |
Waves and Energy | CA | Next Generation Science Standards for California Public Schools | 5-PS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Develop a model to describe that matter is made of particles too small to be seen. |
Pitch and Volume | CA | Next Generation Science Standards for California Public Schools | 5-PS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Develop a model to describe that matter is made of particles too small to be seen. |
Electrical Currents and Circuits | CA | Next Generation Science Standards for California Public Schools | 5-PS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Develop a model to describe that matter is made of particles too small to be seen. |
Sound Energy | CA | Next Generation Science Standards for California Public Schools | 5-PS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Develop a model to describe that matter is made of particles too small to be seen. |
Static Charge | CA | Next Generation Science Standards for California Public Schools | 5-PS1-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Develop a model to describe that matter is made of particles too small to be seen. |
Sound Energy and Mediums | CA | Next Generation Science Standards for California Public Schools | 5-PS1-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Develop a model to describe that matter is made of particles too small to be seen. |
Conservation of Matter | CA | Next Generation Science Standards for California Public Schools | 5-PS1-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Develop a model to describe that matter is made of particles too small to be seen. |
Structure of Matter | CA | Next Generation Science Standards for California Public Schools | 5-PS1-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Develop a model to describe that matter is made of particles too small to be seen. |
Properties of Matter | CA | Next Generation Science Standards for California Public Schools | 5-PS1-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Develop a model to describe that matter is made of particles too small to be seen. |
Heat and Matter | CA | Next Generation Science Standards for California Public Schools | 5-PS1-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Develop a model to describe that matter is made of particles too small to be seen. |
Conservation of Matter | CA | Next Generation Science Standards for California Public Schools | 5-PS1-2 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. |
Magnets and Magnetic Fields | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Make observations and measurements to identify materials based on their properties. |
Properties of Minerals | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations and measurements to identify materials based on their properties. |
Electrical Currents and Circuits | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations and measurements to identify materials based on their properties. |
Engineering Sound Barriers | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations and measurements to identify materials based on their properties. |
Engineering Library Scopes | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations and measurements to identify materials based on their properties. |
Engineering Electric Cars | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make observations and measurements to identify materials based on their properties. |
Current Electricity | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make observations and measurements to identify materials based on their properties. |
Pitch and Volume | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make observations and measurements to identify materials based on their properties. |
Engineering Information Transfer | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make observations and measurements to identify materials based on their properties. |
Magnets and Motors | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations and measurements to identify materials based on their properties. |
Sound Energy and Materials | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Make observations and measurements to identify materials based on their properties. |
Engineering Water Prisms | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Make observations and measurements to identify materials based on their properties. |
Static Charge | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Make observations and measurements to identify materials based on their properties. |
Engineering Pick-and-Place Devices | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Make observations and measurements to identify materials based on their properties. |
Engineering Hearing Toys | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Make observations and measurements to identify materials based on their properties. |
Plate Tectonics and Landform Patterns | CA | Next Generation Science Standards for California Public Schools | 5-PS1-3 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Make observations and measurements to identify materials based on their properties. |
Water Erosion | CA | Next Generation Science Standards for California Public Schools | 5-PS1-4 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Conduct an investigation to determine whether the mixing of two or more substances results in new substances. |
Weathering Rocks | CA | Next Generation Science Standards for California Public Schools | 5-PS1-4 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Conduct an investigation to determine whether the mixing of two or more substances results in new substances. |
Conservation of Matter | CA | Next Generation Science Standards for California Public Schools | 5-PS1-4 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Conduct an investigation to determine whether the mixing of two or more substances results in new substances. |
Energy Transfer and Levers | CA | Next Generation Science Standards for California Public Schools | 5-PS2-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Support an argument that the gravitational force exerted by Earth on objects is directed down. |
Balanced vs. Unbalanced Forces | CA | Next Generation Science Standards for California Public Schools | 5-PS2-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Support an argument that the gravitational force exerted by Earth on objects is directed down. |
Motion in the Solar System | CA | Next Generation Science Standards for California Public Schools | 5-PS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Support an argument that the gravitational force exerted by Earth on objects is directed down. |
Forces and Materials | CA | Next Generation Science Standards for California Public Schools | 5-PS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Support an argument that the gravitational force exerted by Earth on objects is directed down. |
Forces and Levers | CA | Next Generation Science Standards for California Public Schools | 5-PS2-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 | Support an argument that the gravitational force exerted by Earth on objects is directed down. |
Engineering Roller Coasters | CA | Next Generation Science Standards for California Public Schools | 5-PS2-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Support an argument that the gravitational force exerted by Earth on objects is directed down. |
Engineering Launchers | CA | Next Generation Science Standards for California Public Schools | 5-PS2-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Support an argument that the gravitational force exerted by Earth on objects is directed down. |
Engineering Skyscrapers | CA | Next Generation Science Standards for California Public Schools | 5-PS2-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Support an argument that the gravitational force exerted by Earth on objects is directed down. |
Scaling the Sun Earth Moon System | CA | Next Generation Science Standards for California Public Schools | 5-PS2-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Support an argument that the gravitational force exerted by Earth on objects is directed down. |
Energy from the Sun | CA | Next Generation Science Standards for California Public Schools | 5-PS3-1 | [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3 |
Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun. |
Food Webs | CA | Next Generation Science Standards for California Public Schools | 5-PS3-1 | [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 |
Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun. |
Energy and Matter in Food Webs | CA | Next Generation Science Standards for California Public Schools | 5-PS3-1 | [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5 |
Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun. |
Engineering Marble Movers | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. |
Engineering Litter Collectors | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. |
Engineering Dams | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. |
Engineering Communication Devices | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-1 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 | Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. |
Who Scientists Are | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. |
Windy Weather | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool |
Controlling Erosion | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-1 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. |
Sunlight and Engineering | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. |
Engineering Hand Pollinators | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-1 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. |
Engineering Owl Shelters | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-1 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. |
Engineering Boats | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-1 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. |
Engineering Dams | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-2 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. |
Engineering Litter Collectors | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-2 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. |
Engineering Communication Devices | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-2 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. |
Who Scientists Are | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-2 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. |
Windy Weather | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-2 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem |
Controlling Erosion | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. |
Sunlight and Engineering | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-2 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. |
Engineering Hand Pollinators | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. |
Engineering Marble Movers | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-2 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. |
Engineering Owl Shelters | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. |
Engineering Boats | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-2 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. |
Engineering Litter Collectors | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-3 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform. |
Engineering Communication Devices | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-3 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 | Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform. |
Engineering Dams | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-3 | [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 |
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform. |
Who Scientists Are | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-3 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs. |
Sunlight and Engineering | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-3 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs. |
Engineering Hand Pollinators | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-3 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform. |
Engineering Marble Movers | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-3 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs. |
Engineering Owl Shelters | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-3 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform. |
Engineering Boats | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-3 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform. |
Controlling Erosion | CA | Next Generation Science Standards for California Public Schools | K-2-ETS1-3 | [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2 |
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs. |
Who Scientists Are | CA | Next Generation Science Standards for California Public Schools | K-ESS2-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use and share observations of local weather conditions to describe patterns over time. |
Windy Weather | CA | Next Generation Science Standards for California Public Schools | K-ESS2-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use and share observations of local weather conditions to describe patterns over time |
Heat and Water | CA | Next Generation Science Standards for California Public Schools | K-ESS2-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use and share observations of local weather conditions to describe patterns over time. |
The Water Cycle | CA | Next Generation Science Standards for California Public Schools | K-ESS2-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use and share observations of local weather conditions to describe patterns over time. |
Weather and Seasons | CA | Next Generation Science Standards for California Public Schools | K-ESS2-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use and share observations of local weather conditions to describe patterns over time. |
Weather Patterns | CA | Next Generation Science Standards for California Public Schools | K-ESS2-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use and share observations of local weather conditions to describe patterns over time. |
Growing Plants | CA | Next Generation Science Standards for California Public Schools | K-ESS2-2 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs. |
Living Things in Their Habitat | CA | Next Generation Science Standards for California Public Schools | K-ESS3-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live |
Animal Habitats | CA | Next Generation Science Standards for California Public Schools | K-ESS3-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live |
Windy Weather | CA | Next Generation Science Standards for California Public Schools | K-ESS3-2 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather. |
Who Scientists Are | CA | Next Generation Science Standards for California Public Schools | K-ESS3-2 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather. |
Extreme Weather | CA | Next Generation Science Standards for California Public Schools | K-ESS3-2 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather. |
Human Shelter | CA | Next Generation Science Standards for California Public Schools | K-ESS3-3 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment. |
Earth and Human Activity | CA | Next Generation Science Standards for California Public Schools | K-ESS3-3 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment. |
Characteristics of Living Things | CA | Next Generation Science Standards for California Public Schools | K-LS1-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use observations to describe patterns of what plants and animals (including humans) need to survive. |
Living, Nonliving, and Once-Living | CA | Next Generation Science Standards for California Public Schools | K-LS1-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use observations to describe patterns of what plants and animals (including humans) need to survive. |
Growing Plants | CA | Next Generation Science Standards for California Public Schools | K-LS1-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use observations to describe patterns of what plants and animals (including humans) need to survive. |
Animal Habitats | CA | Next Generation Science Standards for California Public Schools | K-LS1-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use observations to describe patterns of what plants and animals (including humans) need to survive. |
Living Things in Their Habitat | CA | Next Generation Science Standards for California Public Schools | K-LS1-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use observations to describe patterns of what plants and animals (including humans) need to survive. |
Parts of Plants | CA | Next Generation Science Standards for California Public Schools | K-LS1-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use observations to describe patterns of what plants and animals (including humans) need to survive. |
Germinating Seeds | CA | Next Generation Science Standards for California Public Schools | K-LS1-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use observations to describe patterns of what plants and animals (including humans) need to survive. |
Pushes and Pulls | CA | Next Generation Science Standards for California Public Schools | K-PS2-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object. |
Forces and Motion | CA | Next Generation Science Standards for California Public Schools | K-PS2-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object. |
Friction and Motion | CA | Next Generation Science Standards for California Public Schools | K-PS2-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object. |
Engineering Marble Movers | CA | Next Generation Science Standards for California Public Schools | K-PS2-2 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull. |
Who Scientists Are | CA | Next Generation Science Standards for California Public Schools | K-PS3-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Make observations to determine the effect of sunlight on Earth’s surface |
The Water Cycle | CA | Next Generation Science Standards for California Public Schools | K-PS3-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Make observations to determine the effect of sunlight on Earth’s surface |
Sunlight and Temperature | CA | Next Generation Science Standards for California Public Schools | K-PS3-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Make observations to determine the effect of sunlight on Earth’s surface |
Sun and Shade | CA | Next Generation Science Standards for California Public Schools | K-PS3-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Make observations to determine the effect of sunlight on Earth’s surface |
Color and Temperature | CA | Next Generation Science Standards for California Public Schools | K-PS3-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Make observations to determine the effect of sunlight on Earth’s surface |
Sunlight and Engineering | CA | Next Generation Science Standards for California Public Schools | K-PS3-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Make observations to determine the effect of sunlight on Earth’s surface |
Weather Patterns | CA | Next Generation Science Standards for California Public Schools | K-PS3-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Make observations to determine the effect of sunlight on Earth’s surface. |
Weather and Seasons | CA | Next Generation Science Standards for California Public Schools | K-PS3-1 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Make observations to determine the effect of sunlight on Earth’s surface. |
Who Scientists Are | CA | Next Generation Science Standards for California Public Schools | K-PS3-2 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use tools and materials provided to design and build a structure that will reduce the warming effect of sunlight on Earth’s surface. |
Sunlight and Engineering | CA | Next Generation Science Standards for California Public Schools | K-PS3-2 | [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K |
Use tools and materials provided to design and build a structure that will reduce the warming effect of sunlight on Earth’s surface. |
Climate Analysis | CA | Next Generation Science Standards for California Public Schools | MS-ESS1-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 | Develop and use a model of the Earth-Sun-moon system to explain the cyclical patterns of lunar phases, eclipses of the sun and moon, and seasons. |
Earth-Sun-Moon System | CA | Next Generation Science Standards for California Public Schools | MS-ESS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. |
Sun Angle and Temperature | CA | Next Generation Science Standards for California Public Schools | MS-ESS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. |
Sun-Earth-Moon System | CA | Next Generation Science Standards for California Public Schools | MS-ESS1-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop and use a model of the Earth-Sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons |
Earth's Place in the Solar System | CA | Next Generation Science Standards for California Public Schools | MS-ESS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. |
Sun-Earth-Moon System | CA | Next Generation Science Standards for California Public Schools | MS-ESS1-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. |
Earth's Place in the Solar System | CA | Next Generation Science Standards for California Public Schools | MS-ESS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Analyze and interpret data to determine scale properties of objects in the solar system. |
Climate Analysis | CA | Next Generation Science Standards for California Public Schools | MS-ESS1-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 | Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history. |
Fossils and Tectonic Plate Motion | CA | Next Generation Science Standards for California Public Schools | MS-ESS1-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 | Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history. |
Animal Diversity | CA | Next Generation Science Standards for California Public Schools | MS-ESS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history. |
Earth's Geologic History | CA | Next Generation Science Standards for California Public Schools | MS-ESS1-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history. |
Mass and Heat Transfer | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process. |
Glacier Motion | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Use a model to illustrate that energy from Earth’s interior drives convection that cycles Earth’s crust, leading to melting, crystallization, weathering, and deformation of large rock formations, including generation of ocean seafloor at ridges, submergence of ocean seafloor at trenches, mountain building, and active volcanic chains. |
Groundwater Flow | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process. |
Earth Materials | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process. |
The Rock Cycle | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process. |
Glacier Motion | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 | Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales. |
Climate Analysis | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 | Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales. |
Groundwater Flow | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales. |
Weathering and Erosion | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. |
Earth Materials | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. |
The Rock Cycle | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. |
Fossils and Tectonic Plate Motion | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-3 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 | Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. |
Earth Materials | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. |
Earth's Geologic History | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. |
Ocean Salinity and Density | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. |
Climate Analysis | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 | Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity. |
Glacier Motion | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 | Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity. |
Groundwater Contamination | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity. |
Sun Angle and Temperature | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity. |
Convection and Weather | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions. |
Groundwater Flow | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity. |
Weathering and Erosion | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. |
The Water Cycle and Earth's Systems | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. |
Sun Angle and Temperature | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-6 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. |
Convection and Weather | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-6 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. |
The Water Cycle and Earth's Systems | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-6 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. |
Ocean Salinity and Density | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-6 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. |
Earth’s Climate | CA | Next Generation Science Standards for California Public Schools | MS-ESS2-6 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. |
Groundwater Contamination | CA | Next Generation Science Standards for California Public Schools | MS-ESS3-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes. |
Natural Resources | CA | Next Generation Science Standards for California Public Schools | MS-ESS3-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes. |
Earthquake-Resistant Skyscrapers | CA | Next Generation Science Standards for California Public Schools | MS-ESS3-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. |
Groundwater Flow | CA | Next Generation Science Standards for California Public Schools | MS-ESS3-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. |
Groundwater Contamination | CA | Next Generation Science Standards for California Public Schools | MS-ESS3-3 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. |
Engineering Water Filtration Devices | CA | Next Generation Science Standards for California Public Schools | MS-ESS3-3 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. |
Engineering Rain Harvesting Systems | CA | Next Generation Science Standards for California Public Schools | MS-ESS3-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. |
Groundwater Contamination | CA | Next Generation Science Standards for California Public Schools | MS-ESS3-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems. |
Greenhouse Effect | CA | Next Generation Science Standards for California Public Schools | MS-ESS3-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems. |
Climate Analysis | CA | Next Generation Science Standards for California Public Schools | MS-ESS3-5 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 | Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century. |
Greenhouse Effect | CA | Next Generation Science Standards for California Public Schools | MS-ESS3-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Ask questions to clarify evidence of the factors that have caused the rise of global temperatures over the past. |
Engineering Rain Harvesting Systems | CA | Next Generation Science Standards for California Public Schools | MS-ESS3-5 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century. |
Engineering Bridges | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Seismograph | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Shoreline Barriers | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Water Filtration Devices | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Vehicles | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Speakers | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Wind Turbines | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Meteoroid Shields | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Greenhouses | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Rain Harvesting Systems | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Chemical Cold Pack Reactions | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Earthquake-Resistant Skyscrapers | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Thermal Control | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Thermal Control | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Bridges | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Water Filtration Devices | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Speakers | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Wind Turbines | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Greenhouses | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Vehicles | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Seismograph | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Shoreline Barriers | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Meteoroid Shields | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Rain Harvesting Systems | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Chemical Cold Pack Reactions | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Earthquake-Resistant Skyscrapers | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Earthquake-Resistant Skyscrapers | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Bridges | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Seismograph | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Shoreline Barriers | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Water Filtration Devices | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-3 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Vehicles | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-3 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Speakers | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-3 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Wind Turbines | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Meteoroid Shields | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Greenhouses | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Rain Harvesting Systems | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Chemical Cold Pack Reactions | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-3 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Thermal Control | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Earthquake-Resistant Skyscrapers | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Bridges | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Water Filtration Devices | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Vehicles | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Speakers | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Meteoroid Shields | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Seismograph | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Wind Turbines | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Shoreline Barriers | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Greenhouses | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Rain Harvesting Systems | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Chemical Cold Pack Reactions | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Thermal Control | CA | Next Generation Science Standards for California Public Schools | MS-ETS1-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Sucrose and Heart Rate | CA | Next Generation Science Standards for California Public Schools | MS-LS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. |
Animal and Plant Cell Structure and Function | CA | Next Generation Science Standards for California Public Schools | MS-LS1-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. |
Comparing Cells | CA | Next Generation Science Standards for California Public Schools | MS-LS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. |
Living Things: Prokaryotes and Eukaryotes | CA | Next Generation Science Standards for California Public Schools | MS-LS1-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. |
Mitosis in Animal and Plant Cells | CA | Next Generation Science Standards for California Public Schools | MS-LS1-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. |
Cellular Respiration | CA | Next Generation Science Standards for California Public Schools | MS-LS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells |
Observing and Comparing Cells | CA | Next Generation Science Standards for California Public Schools | MS-LS1-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. |
Organ System Structure and Function | CA | Next Generation Science Standards for California Public Schools | MS-LS1-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. |
Cell Structure and Function | CA | Next Generation Science Standards for California Public Schools | MS-LS1-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. |
Animal and Plant Cell Structure and Function | CA | Next Generation Science Standards for California Public Schools | MS-LS1-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function. |
Observing and Comparing Cells | CA | Next Generation Science Standards for California Public Schools | MS-LS1-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function. |
The Cell Membrane | CA | Next Generation Science Standards for California Public Schools | MS-LS1-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function. |
Comparing Cells | CA | Next Generation Science Standards for California Public Schools | MS-LS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function. |
Photosynthesis | CA | Next Generation Science Standards for California Public Schools | MS-LS1-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function. |
Sucrose and Heart Rate | CA | Next Generation Science Standards for California Public Schools | MS-LS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. |
Organ System Structure and Function | CA | Next Generation Science Standards for California Public Schools | MS-LS1-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. |
Cell Structure and Function | CA | Next Generation Science Standards for California Public Schools | MS-LS1-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. |
The Nervous System and Senses | CA | Next Generation Science Standards for California Public Schools | MS-LS1-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. |
Animal and Plant Cell Structure and Function | CA | Next Generation Science Standards for California Public Schools | MS-LS1-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. |
The Cell Membrane | CA | Next Generation Science Standards for California Public Schools | MS-LS1-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. |
Chromosomes and Mutations | CA | Next Generation Science Standards for California Public Schools | MS-LS1-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. |
Reproduction | CA | Next Generation Science Standards for California Public Schools | MS-LS1-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. |
Rocky Shore Ecosystems | CA | Next Generation Science Standards for California Public Schools | MS-LS1-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. |
Sea Star Structures | CA | Next Generation Science Standards for California Public Schools | MS-LS1-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. |
Intertidal Zone Temperature Change | CA | Next Generation Science Standards for California Public Schools | MS-LS1-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. |
Natural Selection | CA | Next Generation Science Standards for California Public Schools | MS-LS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Use arguments based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. |
Reproduction and Fungi Structures | CA | Next Generation Science Standards for California Public Schools | MS-LS1-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. |
Forest Food Web | CA | Next Generation Science Standards for California Public Schools | MS-LS1-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. |
Natural Selection | CA | Next Generation Science Standards for California Public Schools | MS-LS1-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. |
DNA and Proteins | CA | Next Generation Science Standards for California Public Schools | MS-LS1-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. |
Life on Earth | CA | Next Generation Science Standards for California Public Schools | MS-LS1-5 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. |
Photosynthesis | CA | Next Generation Science Standards for California Public Schools | MS-LS1-5 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. |
CA | Next Generation Science Standards for California Public Schools | MS-LS1-5 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. |
|
Food and Energy | CA | Next Generation Science Standards for California Public Schools | MS-LS1-6 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. |
Rocky Shore Ecosystems | CA | Next Generation Science Standards for California Public Schools | MS-LS1-6 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. |
Photosynthesis and Oil Spills | CA | Next Generation Science Standards for California Public Schools | MS-LS1-6 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. |
Comparing Cells | CA | Next Generation Science Standards for California Public Schools | MS-LS1-6 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. |
Photosynthesis | CA | Next Generation Science Standards for California Public Schools | MS-LS1-6 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms |
Food and Energy | CA | Next Generation Science Standards for California Public Schools | MS-LS1-7 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. |
Cellular Respiration | CA | Next Generation Science Standards for California Public Schools | MS-LS1-7 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. |
Sucrose and Heart Rate | CA | Next Generation Science Standards for California Public Schools | MS-LS1-8 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories. |
The Nervous System and Senses | CA | Next Generation Science Standards for California Public Schools | MS-LS1-8 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Gather and synthesize information that sensory receptors respond to stimul |
Rocky Shore Ecosystems | CA | Next Generation Science Standards for California Public Schools | MS-LS2-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. |
Food Webs | CA | Next Generation Science Standards for California Public Schools | MS-LS2-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. |
CA | Next Generation Science Standards for California Public Schools | MS-LS2-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. |
|
Food Webs | CA | Next Generation Science Standards for California Public Schools | MS-LS2-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. |
Rocky Shore Ecosystems | CA | Next Generation Science Standards for California Public Schools | MS-LS2-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. |
Rocky Shore Ecosystems | CA | Next Generation Science Standards for California Public Schools | MS-LS2-3 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. |
Food Webs | CA | Next Generation Science Standards for California Public Schools | MS-LS2-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. |
Photosynthesis and Oil Spills | CA | Next Generation Science Standards for California Public Schools | MS-LS2-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. |
Forest Food Web | CA | Next Generation Science Standards for California Public Schools | MS-LS2-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. |
Food Webs | CA | Next Generation Science Standards for California Public Schools | MS-LS2-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. |
Rocky Shore Ecosystems | CA | Next Generation Science Standards for California Public Schools | MS-LS2-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. |
Photosynthesis and Oil Spills | CA | Next Generation Science Standards for California Public Schools | MS-LS2-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. |
CA | Next Generation Science Standards for California Public Schools | MS-LS2-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. |
|
Engineering Water Filtration Devices | CA | Next Generation Science Standards for California Public Schools | MS-LS2-5 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Evaluate competing design solutions for maintaining biodiversity and ecosystem services. |
Engineering Shoreline Barriers | CA | Next Generation Science Standards for California Public Schools | MS-LS2-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Evaluate competing design solutions for maintaining biodiversity and ecosystem services. |
Chromosomes and Mutations | CA | Next Generation Science Standards for California Public Schools | MS-LS3-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. |
Natural Selection | CA | Next Generation Science Standards for California Public Schools | MS-LS3-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. |
DNA and Mutations | CA | Next Generation Science Standards for California Public Schools | MS-LS3-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. |
Heredity and Traits | CA | Next Generation Science Standards for California Public Schools | MS-LS3-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. |
Animal Diversity | CA | Next Generation Science Standards for California Public Schools | MS-LS3-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. |
Reproduction and Fungi Structures | CA | Next Generation Science Standards for California Public Schools | MS-LS3-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. |
Reproduction | CA | Next Generation Science Standards for California Public Schools | MS-LS3-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop and use a model to show why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. |
Heredity and Traits | CA | Next Generation Science Standards for California Public Schools | MS-LS3-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. |
Animal Diversity | CA | Next Generation Science Standards for California Public Schools | MS-LS3-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. |
Reproduction | CA | Next Generation Science Standards for California Public Schools | MS-LS3-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. |
Inheritance and Variation of Traits | CA | Next Generation Science Standards for California Public Schools | MS-LS3-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. |
Life on Earth | CA | Next Generation Science Standards for California Public Schools | MS-LS4-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. |
Fossils and Tectonic Plate Motion | CA | Next Generation Science Standards for California Public Schools | MS-LS4-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 | Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. |
Animal Diversity | CA | Next Generation Science Standards for California Public Schools | MS-LS4-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. |
Comparing Cells | CA | Next Generation Science Standards for California Public Schools | MS-LS4-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. |
Animal Diversity | CA | Next Generation Science Standards for California Public Schools | MS-LS4-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. |
Comparing Cells | CA | Next Generation Science Standards for California Public Schools | MS-LS4-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. |
Life on Earth | CA | Next Generation Science Standards for California Public Schools | MS-LS4-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. |
Animal Diversity | CA | Next Generation Science Standards for California Public Schools | MS-LS4-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy. |
DNA and Mutations | CA | Next Generation Science Standards for California Public Schools | MS-LS4-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment. |
Natural Selection | CA | Next Generation Science Standards for California Public Schools | MS-LS4-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment. |
Life on Earth | CA | Next Generation Science Standards for California Public Schools | MS-LS4-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment. |
Heredity and Traits | CA | Next Generation Science Standards for California Public Schools | MS-LS4-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms. |
Natural Selection | CA | Next Generation Science Standards for California Public Schools | MS-LS4-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms. |
Natural Selection | CA | Next Generation Science Standards for California Public Schools | MS-LS4-6 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time. |
Renewable Energy | CA | Next Generation Science Standards for California Public Schools | MS-PS1-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 | Develop models to describe the atomic composition of simple molecules and extended structures. |
Chromosomes and Mutations | CA | Next Generation Science Standards for California Public Schools | MS-PS1-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop models to describe the atomic composition of simple molecules and extended structures. |
Natural Resources | CA | Next Generation Science Standards for California Public Schools | MS-PS1-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop models to describe the atomic composition of simple molecules and extended structures. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop models to describe the atomic composition of simple molecules and extended structures. |
Polymer Structure and Function | CA | Next Generation Science Standards for California Public Schools | MS-PS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop models to describe the atomic composition of simple molecules and extended structures. |
The Rock Cycle | CA | Next Generation Science Standards for California Public Schools | MS-PS1-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop models to describe the atomic composition of simple molecules and extended structures. |
Atoms | CA | Next Generation Science Standards for California Public Schools | MS-PS1-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop models to describe the atomic composition of simple molecules and extended structures |
Molecules | CA | Next Generation Science Standards for California Public Schools | MS-PS1-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop models to describe the atomic composition of simple molecules and extended structures |
Thermal Energy and Particle Motion | CA | Next Generation Science Standards for California Public Schools | MS-PS1-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop models to describe the atomic composition of simple molecules and extended structures. |
Renewable Energy | CA | Next Generation Science Standards for California Public Schools | MS-PS1-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 | Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS1-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. |
Molecules | CA | Next Generation Science Standards for California Public Schools | MS-PS1-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. |
Earthquake-Resistant Skyscrapers | CA | Next Generation Science Standards for California Public Schools | MS-PS1-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. |
Polymer Structure and Function | CA | Next Generation Science Standards for California Public Schools | MS-PS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. |
Natural Resources | CA | Next Generation Science Standards for California Public Schools | MS-PS1-3 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. |
Engineering Chemical Cold Pack Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS1-3 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. |
Mass and Motion | CA | Next Generation Science Standards for California Public Schools | MS-PS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. |
Mass and Heat Transfer | CA | Next Generation Science Standards for California Public Schools | MS-PS1-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. |
Molecules | CA | Next Generation Science Standards for California Public Schools | MS-PS1-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. |
Renewable Energy | CA | Next Generation Science Standards for California Public Schools | MS-PS1-5 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 | Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS1-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS1-5 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. |
The Rock Cycle | CA | Next Generation Science Standards for California Public Schools | MS-PS1-5 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. |
Molecules | CA | Next Generation Science Standards for California Public Schools | MS-PS1-5 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS1-5 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. |
Engineering Chemical Cold Pack Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS1-6 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes. |
Engineering Meteoroid Shields | CA | Next Generation Science Standards for California Public Schools | MS-PS2-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS2-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. |
Mass and Motion | CA | Next Generation Science Standards for California Public Schools | MS-PS2-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects. |
Forces and Motion | CA | Next Generation Science Standards for California Public Schools | MS-PS2-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. |
Engineering Vehicles | CA | Next Generation Science Standards for California Public Schools | MS-PS2-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. |
Engineering Seismograph | CA | Next Generation Science Standards for California Public Schools | MS-PS2-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. |
Engineering Wind Turbines | CA | Next Generation Science Standards for California Public Schools | MS-PS2-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. |
Engineering Meteoroid Shields | CA | Next Generation Science Standards for California Public Schools | MS-PS2-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. |
Mass and Motion | CA | Next Generation Science Standards for California Public Schools | MS-PS2-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. |
Electric and Magnetic Interactions | CA | Next Generation Science Standards for California Public Schools | MS-PS2-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. |
Magnetism and Energy | CA | Next Generation Science Standards for California Public Schools | MS-PS2-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. |
Engineering Speakers | CA | Next Generation Science Standards for California Public Schools | MS-PS2-3 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. |
Glacier Motion | CA | Next Generation Science Standards for California Public Schools | MS-PS2-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Use evidence to support the claim that gravitational forces between objects are attractive and are only noticeable when one or both of the objects have a very large mass. |
Sea Star Structures | CA | Next Generation Science Standards for California Public Schools | MS-PS2-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. |
Earth-Sun-Moon System | CA | Next Generation Science Standards for California Public Schools | MS-PS2-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. |
Earth's Place in the Solar System | CA | Next Generation Science Standards for California Public Schools | MS-PS2-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. |
Engineering Meteoroid Shields | CA | Next Generation Science Standards for California Public Schools | MS-PS2-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. |
Sun-Earth-Moon System | CA | Next Generation Science Standards for California Public Schools | MS-PS2-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. |
Energy Transformation | CA | Next Generation Science Standards for California Public Schools | MS-PS2-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. |
Magnetism and Energy | CA | Next Generation Science Standards for California Public Schools | MS-PS2-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. |
Engineering Speakers | CA | Next Generation Science Standards for California Public Schools | MS-PS2-5 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. |
Electric and Magnetic Interactions | CA | Next Generation Science Standards for California Public Schools | MS-PS2-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. |
Mass, Speed, and Kinetic Energy | CA | Next Generation Science Standards for California Public Schools | MS-PS3-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. |
Mass and Energy Transfer | CA | Next Generation Science Standards for California Public Schools | MS-PS3-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. |
Mass and Motion | CA | Next Generation Science Standards for California Public Schools | MS-PS3-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. |
Engineering Speakers | CA | Next Generation Science Standards for California Public Schools | MS-PS3-2 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. |
Magnetism and Energy | CA | Next Generation Science Standards for California Public Schools | MS-PS3-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. |
Energy Transformation | CA | Next Generation Science Standards for California Public Schools | MS-PS3-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. |
Engineering Greenhouses | CA | Next Generation Science Standards for California Public Schools | MS-PS3-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. |
Mass and Heat Transfer | CA | Next Generation Science Standards for California Public Schools | MS-PS3-3 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS3-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. |
Engineering Thermal Control | CA | Next Generation Science Standards for California Public Schools | MS-PS3-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. |
Intertidal Zone Temperature Change | CA | Next Generation Science Standards for California Public Schools | MS-PS3-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS3-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. *In this unit, students focus on the relationship between the energy transferred and the change in the average kinetic energy of the substance’s particles. They will incorporate the other aspects of the standard in later units. |
Mass and Heat Transfer | CA | Next Generation Science Standards for California Public Schools | MS-PS3-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS3-4 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. |
Thermal Energy and Particle Motion | CA | Next Generation Science Standards for California Public Schools | MS-PS3-4 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. |
Mass, Speed, and Kinetic Energy | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Engineering Wind Turbines | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Magnetism and Energy | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Intertidal Zone Temperature Change | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Forces and Motion | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Engineering Vehicles | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Electric and Magnetic Interactions | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Polymer Structure and Function | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Mass and Heat Transfer | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Mass and Energy Transfer | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Chemical Reactions | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Engineering Thermal Control | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Thermal Energy and Particle Motion | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Mass and Motion | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Energy Transformation | CA | Next Generation Science Standards for California Public Schools | MS-PS3-5 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Engineering Seismograph | CA | Next Generation Science Standards for California Public Schools | MS-PS4-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. |
Mechanical Waves and Energy | CA | Next Generation Science Standards for California Public Schools | MS-PS4-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. |
Wave Properties and Signals | CA | Next Generation Science Standards for California Public Schools | MS-PS4-1 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. |
Thermal Energy and Particle Motion | CA | Next Generation Science Standards for California Public Schools | MS-PS4-1 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. |
Wave Properties and Signals | CA | Next Generation Science Standards for California Public Schools | MS-PS4-2 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. |
Light and Information Transfer | CA | Next Generation Science Standards for California Public Schools | MS-PS4-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. |
Communication Systems | CA | Next Generation Science Standards for California Public Schools | MS-PS4-3 | [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 |
Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. |
Light and Information Transfer | CA | Next Generation Science Standards for California Public Schools | MS-PS4-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. |
Wave Properties and Signals | CA | Next Generation Science Standards for California Public Schools | MS-PS4-3 | [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6 |
Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. |
Use observations of the sun, moon, and stars to describe patterns that can be predicted.
Use observations of the sun, moon, and stars to describe patterns that can be predicted.
Make observations at different times of year to relate the amount of daylight to the time of year.
Make observations at different times of year to relate the amount of daylight to the time of year.
Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.
Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.
Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.
Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.
Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.
Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.
Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.
Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.
Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.
Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.
Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents. *Students focus on animals in this unit.
Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.
Plan and conduct investigations to determine the effect of placing objects made with different materials in the path of a beam of light.
Use information from several sources to provide evidence that Earth events can occur quickly or slowly.
Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.
Develop a model to represent the shapes and kinds of land and bodies of water in an area.
Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.
Plan and conduct an investigation to determine if plants need sunlight and water to grow.
Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.
Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.
Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.
Make observations of plants and animals to compare the diversity of life in different habitats.
Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.
Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.
Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.
Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.
Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.
Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.
Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.
Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.
Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.
Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object.
Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.
Obtain information to identify where water is found on Earth and that it can be solid or liquid.
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Define a simple design problem reflecting a need or want that includes specified criteria for success and constraints on materials, time, or cost.
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Generate and compare multiple possible solutions to a problem, based on how well each is likely to meet the criteria and constraints of the problem.
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.
Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.
Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.
Obtain and combine information to describe climates in different regions of the world.
Obtain and combine information to describe climates in different regions of the world.
Obtain and combine information to describe climates in different regions of the world.
Obtain and combine information to describe climates in different regions of the world.
Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.
Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.
Obtain and combine information to describe climates in different regions of the world.
Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.
Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.
Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.
Construct an argument that some animals form groups that help members survive.
Construct an argument that some animals form groups that help members survive.
Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.
Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.
Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.
Use evidence to support the explanation that traits can be influenced by the environment.
Use evidence to support the explanation that traits can be influenced by the environment.
Use evidence to support the explanation that traits can be influenced by the environment.
Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.
Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.
Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.
Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.
Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.
Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.
Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.
Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.
Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.
Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.
Make a claim about the merit of a solution to a problem caused when the environment changes and the type of plants and animals that live there may change.
Make a claim about the merit of a solution to a problem caused when the environment changes and the type of plants and animals that live there may change.
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion.
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion.
Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.
Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.
Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.
Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.
Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.
Define a simple design problem that can be solved by applying scientific ideas about magnets.
Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.
Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.
Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.
Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. *In this unit, students focus on the role of weathering in erosion, deposition, and Earth’s changing landscape.
Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.
Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.
Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.
Analyze and interpret data from maps to describe patterns of Earth’s features.
Analyze and interpret data from maps to describe patterns of Earth’s features. how different kinds of rock are mechanically weathered, analyzing how the sediment caused by the weathering can then be eroded. *In this unit, students focus on patterns in the locations of volcanoes and earthquakes.
Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.
Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.
Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.
Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.
Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.
Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.
Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.
Use evidence to construct an explanation relating the speed of an object to the energy of that object. *Students are introduced to the relationship between energy and speed in this unit.
Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. *In this unit, students are introduced to the concept of patterns caused by the relative motions of the sun, moon, and Earth.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.*Students are introduced to energy transfer in this unit by focusing on moving substances. They will explore other forms of energy transfer in later units.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Ask questions and predict outcomes about the changes in energy that occur when objects collide.
Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.
Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.
Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.
Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.
Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.
Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.
Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.
Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.
Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.
Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.
Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.
Generate and compare multiple solutions that use patterns to transfer information.
Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth.
Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth.
Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth.
Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.
Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. *In this unit, students are introduced to the concept of patterns caused by the relative motions of the sun, moon, and Earth.
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.
Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.
Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.
Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.
Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.
Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.
Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.
Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.
Support an argument that plants get the materials they need for growth chiefly from air and water.
Support an argument that plants get the materials they need for growth chiefly from air and water.
Support an argument that plants get the materials they need for growth chiefly from air and water.
Support an argument that plants get the materials they need for growth chiefly from air and water.
Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.
Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.
Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.
Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.
Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.
Develop a model to describe that matter is made of particles too small to be seen.
Develop a model to describe that matter is made of particles too small to be seen.
Develop a model to describe that matter is made of particles too small to be seen.
Develop a model to describe that matter is made of particles too small to be seen.
Develop a model to describe that matter is made of particles too small to be seen.
Develop a model to describe that matter is made of particles too small to be seen.
Develop a model to describe that matter is made of particles too small to be seen.
Develop a model to describe that matter is made of particles too small to be seen.
Develop a model to describe that matter is made of particles too small to be seen.
Develop a model to describe that matter is made of particles too small to be seen.
Develop a model to describe that matter is made of particles too small to be seen.
Develop a model to describe that matter is made of particles too small to be seen.
Develop a model to describe that matter is made of particles too small to be seen.
Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Make observations and measurements to identify materials based on their properties.
Conduct an investigation to determine whether the mixing of two or more substances results in new substances.
Conduct an investigation to determine whether the mixing of two or more substances results in new substances.
Conduct an investigation to determine whether the mixing of two or more substances results in new substances.
Support an argument that the gravitational force exerted by Earth on objects is directed down.
Support an argument that the gravitational force exerted by Earth on objects is directed down.
Support an argument that the gravitational force exerted by Earth on objects is directed down.
Support an argument that the gravitational force exerted by Earth on objects is directed down.
Support an argument that the gravitational force exerted by Earth on objects is directed down.
Support an argument that the gravitational force exerted by Earth on objects is directed down.
Support an argument that the gravitational force exerted by Earth on objects is directed down.
Support an argument that the gravitational force exerted by Earth on objects is directed down.
Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.
Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.
Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Use and share observations of local weather conditions to describe patterns over time.
Use and share observations of local weather conditions to describe patterns over time
Use and share observations of local weather conditions to describe patterns over time.
Use and share observations of local weather conditions to describe patterns over time.
Use and share observations of local weather conditions to describe patterns over time.
Use and share observations of local weather conditions to describe patterns over time.
Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs.
Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live
Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live
Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.
Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.
Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.
Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.
Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.
Use observations to describe patterns of what plants and animals (including humans) need to survive.
Use observations to describe patterns of what plants and animals (including humans) need to survive.
Use observations to describe patterns of what plants and animals (including humans) need to survive.
Use observations to describe patterns of what plants and animals (including humans) need to survive.
Use observations to describe patterns of what plants and animals (including humans) need to survive.
Use observations to describe patterns of what plants and animals (including humans) need to survive.
Use observations to describe patterns of what plants and animals (including humans) need to survive.
Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.
Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.
Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.
Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.
Make observations to determine the effect of sunlight on Earth’s surface
Make observations to determine the effect of sunlight on Earth’s surface
Make observations to determine the effect of sunlight on Earth’s surface
Make observations to determine the effect of sunlight on Earth’s surface
Make observations to determine the effect of sunlight on Earth’s surface
Make observations to determine the effect of sunlight on Earth’s surface
Make observations to determine the effect of sunlight on Earth’s surface.
Make observations to determine the effect of sunlight on Earth’s surface.
Use tools and materials provided to design and build a structure that will reduce the warming effect of sunlight on Earth’s surface.
Use tools and materials provided to design and build a structure that will reduce the warming effect of sunlight on Earth’s surface.
Develop and use a model of the Earth-Sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons
Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.
Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.
Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.
Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.
Use a model to illustrate that energy from Earth’s interior drives convection that cycles Earth’s crust, leading to melting, crystallization, weathering, and deformation of large rock formations, including generation of ocean seafloor at ridges, submergence of ocean seafloor at trenches, mountain building, and active volcanic chains.
Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.
Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.
Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.
Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales.
Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.
Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.
Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.
Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.
Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.
Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.
Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.
Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions.
Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.
Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.
Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.
Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.
Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.
Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.
Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.
Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.
Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.
Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.
Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.
Ask questions to clarify evidence of the factors that have caused the rise of global temperatures over the past.
Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.
Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.
Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.
Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.
Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.
Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.
Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.
Use arguments based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.
Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.
Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.
Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.
Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.
Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms
Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.
Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.
Gather and synthesize information that sensory receptors respond to stimul
Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.
Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.
Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.
Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.
Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.
Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.
Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.
Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.
Develop and use a model to show why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.
Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.
Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.
Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.
Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.
Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.
Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.
Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.
Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.
Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.
Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.
Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.
Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.
Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.
Develop models to describe the atomic composition of simple molecules and extended structures.
Develop models to describe the atomic composition of simple molecules and extended structures.
Develop models to describe the atomic composition of simple molecules and extended structures.
Develop models to describe the atomic composition of simple molecules and extended structures.
Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.
Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.
Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.
Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.
Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.
Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.
Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.
Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.
Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.
Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.
Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.
Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.
Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.
Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.
Use evidence to support the claim that gravitational forces between objects are attractive and are only noticeable when one or both of the objects have a very large mass.
Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.
Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.
Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.
Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.
Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.
Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.
Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.
Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. *In this unit, students focus on the relationship between the energy transferred and the change in the average kinetic energy of the substance’s particles. They will incorporate the other aspects of the standard in later units.
Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.
Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.
Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.
Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.
Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.
Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.
Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.
Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.
Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.
Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.
Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.
Standards citation: NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. Neither WestEd nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product, and do not endorse it.