Science Lesson | Standards | State ID | Grades | Performance Expectation |
---|---|---|---|---|
Earth-Sun-Moon System | NGSS | MS-ESS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. |
Sun Angle and Temperature | NGSS | MS-ESS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. |
Earth's Place in the Solar System | NGSS | MS-ESS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. |
Earth's Place in the Solar System | NGSS | MS-ESS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Analyze and interpret data to determine scale properties of objects in the solar system. |
Animal Diversity | NGSS | MS-ESS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history. |
Sun Angle and Temperature | NGSS | MS-ESS2-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity. |
Convection and Weather | NGSS | MS-ESS2-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions. |
Sun Angle and Temperature | NGSS | MS-ESS2-6 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. |
Convection and Weather | NGSS | MS-ESS2-6 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. |
Greenhouse Effect | NGSS | MS-ESS3-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems. |
Greenhouse Effect | NGSS | MS-ESS3-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Ask questions to clarify evidence of the factors that have caused the rise of global temperatures over the past. |
Engineering Seismograph | NGSS | MS-ETS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Shoreline Barriers | NGSS | MS-ETS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Wind Turbines | NGSS | MS-ETS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Meteoroid Shields | NGSS | MS-ETS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Greenhouses | NGSS | MS-ETS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. |
Engineering Wind Turbines | NGSS | MS-ETS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Greenhouses | NGSS | MS-ETS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Seismograph | NGSS | MS-ETS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Shoreline Barriers | NGSS | MS-ETS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Meteoroid Shields | NGSS | MS-ETS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. |
Engineering Seismograph | NGSS | MS-ETS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Shoreline Barriers | NGSS | MS-ETS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Wind Turbines | NGSS | MS-ETS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Meteoroid Shields | NGSS | MS-ETS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Greenhouses | NGSS | MS-ETS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. |
Engineering Meteoroid Shields | NGSS | MS-ETS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Seismograph | NGSS | MS-ETS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Wind Turbines | NGSS | MS-ETS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Shoreline Barriers | NGSS | MS-ETS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Engineering Greenhouses | NGSS | MS-ETS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. |
Comparing Cells | NGSS | MS-LS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. |
Cellular Respiration | NGSS | MS-LS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells |
Sucrose and Heart Rate | NGSS | MS-LS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. |
Comparing Cells | NGSS | MS-LS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function. |
Sucrose and Heart Rate | NGSS | MS-LS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. |
Natural Selection | NGSS | MS-LS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Use arguments based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. |
Natural Selection | NGSS | MS-LS1-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. |
DNA and Proteins | NGSS | MS-LS1-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. |
Photosynthesis and Oil Spills | NGSS | MS-LS1-6 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. |
Comparing Cells | NGSS | MS-LS1-6 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. |
Cellular Respiration | NGSS | MS-LS1-7 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. |
Sucrose and Heart Rate | NGSS | MS-LS1-8 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories. |
Food Webs | NGSS | MS-LS2-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. |
Food Webs | NGSS | MS-LS2-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. |
Food Webs | NGSS | MS-LS2-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. |
Photosynthesis and Oil Spills | NGSS | MS-LS2-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. |
Food Webs | NGSS | MS-LS2-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. |
Photosynthesis and Oil Spills | NGSS | MS-LS2-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. |
Engineering Shoreline Barriers | NGSS | MS-LS2-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Evaluate competing design solutions for maintaining biodiversity and ecosystem services. |
Natural Selection | NGSS | MS-LS3-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. |
DNA and Mutations | NGSS | MS-LS3-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. |
Heredity and Traits | NGSS | MS-LS3-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. |
Animal Diversity | NGSS | MS-LS3-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. |
Heredity and Traits | NGSS | MS-LS3-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. |
Animal Diversity | NGSS | MS-LS3-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. |
Reproduction | NGSS | MS-LS3-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. |
Animal Diversity | NGSS | MS-LS4-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. |
Comparing Cells | NGSS | MS-LS4-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. |
Animal Diversity | NGSS | MS-LS4-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. |
Comparing Cells | NGSS | MS-LS4-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. |
Animal Diversity | NGSS | MS-LS4-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy. |
DNA and Mutations | NGSS | MS-LS4-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment. |
Natural Selection | NGSS | MS-LS4-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment. |
Heredity and Traits | NGSS | MS-LS4-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms. |
Natural Selection | NGSS | MS-LS4-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms. |
Natural Selection | NGSS | MS-LS4-6 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time. |
Chemical Reactions | NGSS | MS-PS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop models to describe the atomic composition of simple molecules and extended structures. |
Polymer Structure and Function | NGSS | MS-PS1-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop models to describe the atomic composition of simple molecules and extended structures. |
Chemical Reactions | NGSS | MS-PS1-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. |
Polymer Structure and Function | NGSS | MS-PS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. |
Chemical Reactions | NGSS | MS-PS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. |
Mass and Motion | NGSS | MS-PS1-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. |
Chemical Reactions | NGSS | MS-PS1-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. |
Chemical Reactions | NGSS | MS-PS1-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. |
Engineering Meteoroid Shields | NGSS | MS-PS2-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects. |
Mass and Motion | NGSS | MS-PS2-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects. |
Engineering Seismograph | NGSS | MS-PS2-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. |
Engineering Wind Turbines | NGSS | MS-PS2-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. |
Engineering Meteoroid Shields | NGSS | MS-PS2-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. |
Mass and Motion | NGSS | MS-PS2-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. |
Electric and Magnetic Interactions | NGSS | MS-PS2-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. |
Magnetism and Energy | NGSS | MS-PS2-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. |
Earth-Sun-Moon System | NGSS | MS-PS2-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. |
Earth's Place in the Solar System | NGSS | MS-PS2-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. |
Engineering Meteoroid Shields | NGSS | MS-PS2-4 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. |
Magnetism and Energy | NGSS | MS-PS2-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. |
Electric and Magnetic Interactions | NGSS | MS-PS2-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. |
Mass and Motion | NGSS | MS-PS3-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. |
Magnetism and Energy | NGSS | MS-PS3-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. |
Engineering Greenhouses | NGSS | MS-PS3-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. |
Engineering Wind Turbines | NGSS | MS-PS3-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Magnetism and Energy | NGSS | MS-PS3-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Electric and Magnetic Interactions | NGSS | MS-PS3-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Chemical Reactions | NGSS | MS-PS3-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Polymer Structure and Function | NGSS | MS-PS3-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 | Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Mass and Motion | NGSS | MS-PS3-5 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. |
Engineering Seismograph | NGSS | MS-PS4-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. |
Mechanical Waves and Energy | NGSS | MS-PS4-1 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. |
Light and Information Transfer | NGSS | MS-PS4-2 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. |
Light and Information Transfer | NGSS | MS-PS4-3 | [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 |
Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. |
Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.
Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions.
Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.
Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.
Ask questions to clarify evidence of the factors that have caused the rise of global temperatures over the past.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Use arguments based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.
Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.
Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.
Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.
Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.
Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.
Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.
Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.
Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.
Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.
Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.
Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.
Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.
Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.
Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.
Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.
Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.
Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.
Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.
Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.
Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.
Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.
Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.
Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.
Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.
Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.
Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.
Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.
Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.
Standards citation: NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. Neither WestEd nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product, and do not endorse it.